The Effect of Crystallization by Heat Treatment on Electromagnetic Interference Shielding Efficiency of Carbon Fibers

열처리 온도에 의한 구조 결정성이 탄소섬유의 전자파 차폐 성능에 미치는 영향

  • Kim, Jong Gu (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Chung, Choul Ho (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Lee, Young-Seak (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University)
  • 김종구 (충남대학교 공과대학 정밀응용화학과) ;
  • 정철호 (충남대학교 공과대학 정밀응용화학과) ;
  • 이영석 (충남대학교 공과대학 정밀응용화학과)
  • Received : 2010.10.05
  • Accepted : 2010.11.05
  • Published : 2011.04.10


To investigate the electromagnetic interference shielding efficiency (EMI SE) property based on heat treatment effects of carbon fibers in various temperatures, the polyacrilonitrle-based carbon fibers were prepared by electrospinning method and treated at 1073, 1323, 1873 and 2573 K. The surface morphology of carbon fibers was investigated by using FE-SEM and the carbon crystallization was studied by Raman spectroscopy based on effects of reaction temperatures. The electrical conductivity was obtained by measuring the surface resistance with four probe method on carbon crystallization. The permittivity, permeability and EMI SE were investigated by using S-parameter in the range of 800~4500 MHz. In case of carbon fibers treated at 2573 K, the improved carbon crystallization was confirmed by Raman spectrum and the enhanced electrical conductivity showing 54.7 S/cm was also observed. The permittivity was dramatically improved by factor of 4 based on effect of high reaction temperature. Eventually, the highly improved EMI SE value was obtained showing around 41.7 dB.


  1. P. Saini, V. Choudhary, B. P. Singh, R. B. Mathur, and S. K. Dhawan, Mater. Chem. Phys., 113, 919 (2009).
  2. C. S. Chen, W. R. Chen, S. C. Chen, and R. D. Chien, Int. Commun. Heat. Mass., 35, 744 (2008).
  3. C. Y. Huang, W. W. Mo, and M. L. Roan, Surf. Coat. Tech., 184, 123 (2004).
  4. M. S. Kim, H. K. Kim, S. W. Byun, S. H. Jeong, Y. K. Hong, and J. S. Joo, Synthetic Met., 126, 233 (2002).
  5. J. Wu, I. Hong, S. M. Park, S. Y. Lee, and M. S. Kim, Carbon Lett., 9, 137 (2008).
  6. D. D. L. Chung, Carbon, 39, 279 (2001).
  7. L. Yu, K. Kim, D. Park, M. S. Kim, K. I. Kim, and Y. S. Lim, Carbon Lett., 9, 210 (2008).
  8. Q. Liu, D. Zhang, T. Fan, J. Gu, Y. Miyamoto, and Z. Chen, Carbon, 46, 461 (2008).
  9. Y. Huang, N. Li, Y. Ma, F. Du, F. Li, and X. He, Carbon, 45, 1614 (2007).
  10. Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Li, and T. Guo, Carbon, 45, 821 (2007).
  11. S. Bhadra, N. K. Singha, and D. Khastgir, Curr. Appl. Phys., 9, 396 (2009).
  12. J. B. Donnet and R. C. Bansal, Carbon Fibers 2nd ed., Marcel Dekker, New York, (1990).
  13. Y. Yang, X. Liu, B. Xu, and T. Li, Carbon, 44, 1661 (2006).
  14. G. Savage, Carbon-Carbon Composite, Chapman & Hall, London (1993).
  15. E. Fitzer, Carbon Fibers and Their Composites, Springer, Berlin (1985).
  16. J. S. Im, S. J. Park, and Y. S. Lee, J. Colloid Interface, 314, 32 (2007).
  17. Y. Guo, L. Xiaohong, C. Xiaojun, C. Wenguo, Z. Shaobing, and W. Jie, Acta Mater., 56, 5775 (2008).
  18. J. S. Im, S. J. Park, T. J. Kim, Y. H. Kim, and Y. S. Lee, J. Colloid Interface Sci., 318, 42 (2008).
  19. J. S. Im, S. J. Park, and Y. S. Lee, Int. J. Hydrogen Energy, 34, 1423 (2009).
  20. J. Y. Park, I. H. Lee, and G. N. Bea, J. Ind. Eng. Chem., 14, 707 (2006).
  21. S. J. Kim, S. M. Yun, and Y. S. Lee, J. Ind. Eng. Chem., 16, 273 (2010).
  22. J. S. Im, J. S. Jang, and Y. S. Lee, J. Ind. Eng. Chem., 15, 914 (2009).
  23. A. M. Nicolson and G. F. Ross, IEEE Trans Instrum. Meas., 19, 377 (1970).
  24. D. K. Ghodgaonkar, V. V. Vardan, and V. K. Varadan, IEEE Trans Instrum. Meas., 39, 387 (1990).
  25. Y. K. Hong, C. Y. Lee, C. K. Jeong, D. E. Lee, K. Kim, and J. Joo, Rev. Sci. Instrum., 74, 1098 (2003).
  26. G. Andreas and H. W. Joachim, Angew. Chem. Int. Ed., 46, 703 (2007).
  27. J. J. Kipling and P. V. Shooter, Proc. 2nd Conf. Ind. Carbon Graphite, Soc. Chem. Ind., London, 15 (1965).
  28. A. Oberlin, Carbon, 17, 7 (1979).
  29. F. R. Barnet and M. K. Norr, Carbon, 11, 281 (1973).
  30. M. S. A. Rahaman, A. F. Ismail, and A. Mustafa, Polym. Degrad. Stabil., 92, 1421 (2007).
  31. S. Arman, E. F. Reza, and S. Ali, J. Mater. Process. Tech., 198, 60 (2008).
  32. S. Dalton, F. Heatley, and M. B. Peter, Polymer, 40, 5531 (1999).
  33. D. D. Edie, Carbon, 36, 345 (1998).
  34. K. Tse-Hao, J. Appl. Polym. Sci., 59, 577 (1996).<577::AID-APP2>3.0.CO;2-Q
  35. ASTM F1529-97, Standard test method for sheet resistance uniformity evaluation by in-line four-point probe with the dualconfiguration procedure (1997).
  36. J. S. Im, S. J. Kim, P. H. Kang, and Y. S. Lee, J. Ind. Eng. Chem., 15, 699 (2009).
  37. Z. Wu, J. Li, D. Timmer, K. Lozano, and S. Bose, Int. J. Adhes., 29, 488 (2009).
  38. S. K. Dhawan, K. Singh, A. K. Bakhshi, and A. Ohlan, Synthetic Met., 159, 2259 (2009).
  39. J. S. Im, J. G. Kim, S. H. Lee, and Y. S. Lee, Colloid Surf. APhysicochem. Eng. Asp., 364, 151 (2010).
  40. J. S. Im, J. G. Kim, and Y. S. Lee, Carbon, 47, 2640 (2009).
  41. J. S. Im, J. G. Kim, and S. H. Lee, Mater. Chem. Phys., In press.