Understanding of Polymer Electrolyte Membrane for a Unitized Regenerative Fuel Cell (URFC)

일체형 재생 연료전지(URFC)용 고분자 전해질 막의 이해

  • Jung, Ho-Young (Department of Chemical Engineering, Kangwon National University)
  • 정호영 (강원대학교 삼척캠퍼스 화학공학과)
  • Received : 2011.01.18
  • Accepted : 2011.03.08
  • Published : 2011.04.10


A unitized regenerative fuel cell (URFC) as a next-generation fuel cell technology was considered in the study. URFC is a mandatory technology for the completion of the hybrid system with the fuel cell and the renewable energy sources, and it can be expected as a new technology for the realization of hydrogen economy society in the $21^{st}$ century. Specifically, the recent research data and results concerning the polymer electrolyte membrane for the URFC technology were summarized in the study. The prime requirements of polymer electrolyte membrane for the URFC applications are high proton conductivity, dimensional stability, mechanical strength, and interfacial stability with the electrode binder. Based on the performance of the polymer electrolyte membrane, the URFC technology combining the systems for the production, storage, utilization of hydrogen can be a new research area in the development of an advanced technology concerning with renewable energy such as fuel cell, solar cell, and wind power.


Supported by : National Research Foundation of Korea (NRF)


  1. F. Mitlitsky, B. Myers, A. H. Weisberg, T. M. Molter, and W. F. Smith, Portable Fuel Cells Conference, Lucerne, Switzerland, June 21-24 (1999).
  2. https://www.llnl.gov/str/Mitlit.html.
  3. F. Mitlitsky, B. Myers, and A. H.Weisberg, Energy & Fuels, 12, 56 (1998). https://doi.org/10.1021/ef970151w
  4. K. A. Burke, NASA/TM-2003-212739 (2003).
  5. K. A. Burke, Ian Jakupca, NASA/TM-2004-213355 (2004).
  6. K. A. Burke, Ian Jakupca, NASA/TM-2005-213442 (2005).
  7. U. Wittstadt, E. Wagner, and T. Jungmann, J. Power Sources, 145, 555 (2005). https://doi.org/10.1016/j.jpowsour.2005.02.068
  8. T. Ioroi, T. Oku, 1, K. Yasuda, N. Kumagai, and Y. Miyazaki, J. Power Sources, 124, 385 (2003). https://doi.org/10.1016/S0378-7753(03)00795-X
  9. G. Chen, H. Zhang, J. Cheng, Y. Ma, and H. Zhong, Electrochem. Commun., 10, 1373 (2008). https://doi.org/10.1016/j.elecom.2008.07.002
  10. H.-Y. Jung, S. Park, and B. N. Popov, J. Power Sources, 191, 357 (2009). https://doi.org/10.1016/j.jpowsour.2009.02.060
  11. E. Slavcheva, I. Radev, S. Bliznakov, G. Topalov, P. Andreev, and E. Budevski, Electrochim. Acta, 52, 3889 (2007). https://doi.org/10.1016/j.electacta.2006.11.005
  12. W. Yao, J. Yang, J. Wang, and Y. Nuli, Electrochem. Commun., 9, 1029 (2007). https://doi.org/10.1016/j.elecom.2006.12.017
  13. T. Ioroi, N. Kitazawa, K. Yasuda, Y. Yamamoto, and H. Takenakaa, J. Electrochem. Soc., 147, 2018 (2000). https://doi.org/10.1149/1.1393478
  14. S.-D. Yim, G.-G. Park, Y.-J. Sohn, W.-Y. Lee, Y.-G. Yoon, T.-H. Yang, S. Um, S.-P. Yu, and C.-S. Kim, Int. J. Hydrogen Energ., 30, 1345 (2005). https://doi.org/10.1016/j.ijhydene.2005.04.013
  15. S.-D. Yim, W.-Y. Lee, Y.-G. Yoon, Y.-J. Sohn, G.-G. Park, T.-H. Yang, and C.-S. Kim, Electrochim. Acta, 50, 713 (2004). https://doi.org/10.1016/j.electacta.2004.02.068
  16. S. Song, H. Zhang, X. Ma, Z.-G. Shao, Y. Zhang, and B. Yi, Electrochem. Commun., 8, 399 (2006). https://doi.org/10.1016/j.elecom.2006.01.001
  17. H.-Y. Jung, S.-Y. Huang, P. Ganesan, and B. N. Popov, J. Power Sources, 194, 972 (2009). https://doi.org/10.1016/j.jpowsour.2009.06.030
  18. H.-Y. Jung, S.-Y. Huang, and B. N. Popov, J. Power Sources, 195, 1950 (2010). https://doi.org/10.1016/j.jpowsour.2009.10.002
  19. S.-H. Wang, J. Peng, W.-B. Lui, and J.-S. Zhang, J. Power Sources, 162, 486 (2006). https://doi.org/10.1016/j.jpowsour.2006.06.084
  20. S.-H. Wang, J. Peng, and W.-B. Lui, J. Power Sources, 160, 485 (2006). https://doi.org/10.1016/j.jpowsour.2006.01.020
  21. R. P. O'Hayre and S.-W. Cha, W. Colella, and F. B. Prinz, Fuel cell fundamentals, John Wiley & Sons, New York (2006).
  22. J. Peron, A. Mani, X. Zhao, D. Edwards, M. Adachi, T. Soboleva, Z. Shi, Z. Xie, T. Navessin, and S. Holdcroft, J. Membr. Sci., 356, 44 (2010). https://doi.org/10.1016/j.memsci.2010.03.025
  23. W. Y. Hsu and T. D. Gierke, J. Membr. Sci., 13, 307 (1983). https://doi.org/10.1016/S0376-7388(00)81563-X
  24. M. Fujimura, T. Hashimoto, and H. Kawai, Macromolecules, 14, 1309 (1981). https://doi.org/10.1021/ma50006a032
  25. R. B. Moore and C. R. Martin, Macromolecules, 21, 1334 (1988). https://doi.org/10.1021/ma00183a025
  26. http://www.fuelcell.com/techsheets/Nafion%201135%20115-%20117.pdf.
  27. P. Be´bin, M. Caravanier, and H. Galiano, J. Membr. Sci., 278, 35 (2006). https://doi.org/10.1016/j.memsci.2005.10.042
  28. W. Vielstich, A. Lamm, and H. A. Gasteiger, Hand book of fuel cells, Vol.3, Part 3, John Wiley & Sons, New York (2003).
  29. H.-Y. Jung and J.-K. Park, Int. J. Hydrogen Energ., 34, 3915 (2009). https://doi.org/10.1016/j.ijhydene.2009.02.065
  30. R. S. McLean, M. Doyle, and B. B. Sauer, Macromolecules, 33, 6541 (2000). https://doi.org/10.1021/ma000464h
  31. Y. S. Kim, M. A. Hickner, L. Dong, B. S. Pivovar, and J. E. McGrath, J. Membr. Sci., 243, 317 (2004). https://doi.org/10.1016/j.memsci.2004.06.035
  32. G. Gebel, P. Aldebert, and M. Pineri, Macromolecules, 20, 1425 (1987). https://doi.org/10.1021/ma00172a049
  33. H.-Y. Jung and J.-K. Park, Korean Chem. Eng. Res., 45, 391 (2007).
  34. J. A. Kolde, B. Bahar, M. S. Wilson, T. A. Zawodzinski, and S. Gottesfeld, Proceedings of the First International Symposium on Proton Conducting Membrane Fuel Cells I, Electrochemical Society Proceedings, 95, 193 (1995).
  35. http://www.fuelcell.com/techsheets/Nafion%201135%20115-%20117.pdf.
  36. F. Liu, B. Yi, D. Xing, J. Yu, and H. Zhang, J. Membr. Sci., 212, 213 (2003). https://doi.org/10.1016/S0376-7388(02)00503-3
  37. Y. S. Kim, L. Dong, M. Hickner, T. E. Glass, and J. E. McGrath, Macromolecules, 36, 6281 (2003). https://doi.org/10.1021/ma0301451