항생펩타이드의 기능과 적용분야

The Function and Application of Antibiotic Peptides

  • 이종국 (조선대학교 단백질소재연구센터) ;
  • ;
  • 박윤경 (조선대학교 자연과학대학 생명공학과)
  • Lee, Jong-Kook (Research Center for Proteinaceous Materials (RCPM), Chosun University) ;
  • Gopal, Ramamourthy (Research Center for Proteinaceous Materials (RCPM), Chosun University) ;
  • Park, Yoonkyung (Department of Biotechnology, Chosun University)
  • 투고 : 2011.03.12
  • 발행 : 2011.04.10

초록

현재, 사람들은 많은 병에 노출되어 있다. 산업화의 빠른 변화는 생산시설의 자동화, 정보 통신 산업기술의 발달로 삶의 질이 향상되었으나, 신체활동의 감소와 환경오염으로 인해 환경적 스트레스와 병원균 감염 반응에 대한 인간의 면역체계가 악화되었다. 아울러 현재 약물의 오 남용으로 다재약물내성을 갖는 미생물들(multidrug-resistant microbes)과 암세포(tumor)의 출현으로 인해 새로운 항생제 개발이 시급하다. 그들 중 하나가 항생 펩타이드(antibiotic peptide)로 기존 약물과 비교하면 약물저항성이 거의 일어나지 않는다. 여러 가지 항생활성을 가지는 펩타이드들은 다양한 생명체로부터 동정되고 있다. 이 논문은 항생 펩타이드들의 활성과 적용분야에 대해 논하려 한다.

과제정보

연구 과제 주관 기관 : 연구재단

참고문헌

  1. P. C. Oyston, M. A. Fox, S. J. Richards, and G. C. Clark, Journal of Medical Microbiology, 58, 977 (2009). https://doi.org/10.1099/jmm.0.011122-0
  2. T. Tadokoro, Y. Yamaguchi, J. Batzer et al., J. Invest. Dermatol., 124, 1326 (2005). https://doi.org/10.1111/j.0022-202X.2005.23760.x
  3. B. M. Peters, M. E. Shirtliff, and M. A. Jabra-Rizk, PloS pathog, 6 (2010).
  4. C. H. Rhee and G. J. Woo, J. Food Prot., 73, 2285 (2010).
  5. National institutes of health. Minutes of the national advisory dental and craniofacial research council-153rd meeting. Available at: www.nidcr.nig.gov/AboutNIDCR/council and committees/NADCRC/inutes/Minutes 53.htm. Accessed (2007).
  6. J. W. Costerton and P. DeMeo, Plast. Reconstr. Surg., 1, 36 (2011).
  7. F. Bray and B. Moller, Nat. Rev. Cancer, 6, 63 (2006). https://doi.org/10.1038/nrc1781
  8. P. Anand, A. B. Kunnumakkara, C. Sundaram, K. B. Harikumar, S. T. Tharakan, O. S. Lai, B. Sung, and B. B. Aggarwal, Pharm. Res., 25, 2097 (2008). https://doi.org/10.1007/s11095-008-9661-9
  9. A. H. Salem, W. F. Elkhatib, and A. M. Noreddin, J. Pharm. Pharmacol., 63, 73 (2011). https://doi.org/10.1111/j.2042-7158.2010.01183.x
  10. V. F. Mariievs'kyi, IuV. Poliachenko, A. H. Salmanov, I. V. Shpak, and S. I. Doan, Klin Khir, 9, 31 (2010).
  11. I. K. Neonakis, D. A. Spandidos, and E. Petinaki, Int. J. Antimicrob. Agents, 37, 102 (2011). https://doi.org/10.1016/j.ijantimicag.2010.10.014
  12. R. E. Hancock, Lancet, 349, 418 (1997). https://doi.org/10.1016/S0140-6736(97)80051-7
  13. Y. Shai, Biopolymers, 66, 236 (2002). https://doi.org/10.1002/bip.10260
  14. Y. Huang, J. Huang, and Y. Chen, Protein Cell, 1, 143 (2010). https://doi.org/10.1007/s13238-010-0004-3
  15. A. Brogden Kim, Nat. Rev. Microbiol., 3, 238 (2005). https://doi.org/10.1038/nrmicro1098
  16. N. M. Manuel, R. Ferre, and M. A. Castanho, Nat. Rev. Microbial., 7, 245 (2009). https://doi.org/10.1038/nrmicro2095
  17. K. A. Brogden, Nat. Rev. Microbiaol., 3, 238 (2005). https://doi.org/10.1038/nrmicro1098
  18. N. MeloM, R. Ferre, and M. A. Castanho, Nat. Rev. Microbiol., 7, 245 (2009). https://doi.org/10.1038/nrmicro2095
  19. Y. Huang, J. Huang, and Y. Chen, Protein Cell, 1, 143 (2010). https://doi.org/10.1007/s13238-010-0004-3
  20. C. William, Wimley, and K. Hristova, J. Membrane Biol., 239, 27 (2011). https://doi.org/10.1007/s00232-011-9343-0
  21. H. Raghuraman and A. Chattopadhyay, Biosci. Rep., 27, 189 (2007). https://doi.org/10.1007/s10540-006-9030-z
  22. K. Hall, T. H. Lee, and M. I. Aguilar, J. Mol. Recognit, 24, 108 (2011). https://doi.org/10.1002/jmr.1032
  23. B. K. Pandey, A. Ahmad, N. Asthana, S. Azmi, R. M. Srivastava, S. Srivastava, R. Verma, A. L. Vishwakarma, and J. K. Ghosh, Biochemistry, 49, 7920 (2010). https://doi.org/10.1021/bi100729m
  24. M. H. Park, M. S. Choi, K. W. Oh, D. Y. Yoon, S. B. Han, M. J. Song, and J. T. Hong, Prostate (2010).
  25. M. Zasloff, Proc. Natl. Acad. Sci., USA, 5449 (1987).
  26. Y. Tamba, H. Ariyama, V. Levadny, and M. Yamazaki, J. Phys. Chem. B, 114, 12018 (2010). https://doi.org/10.1021/jp104527y
  27. T. Tachi, R. F. Epand, R. M. Epand, and K. Matsuzaki, Biochemistry, 27, 10723 (2002).
  28. Y. Ge, D. MacDonald, M. M. Henry, H. I. Hait, K. A. Nelson, B. A. Lipsky, M. A. Zasloff, and K. J. Holroyd, Diagn Microbiol Infect Dis., 35, 45 (1999). https://doi.org/10.1016/S0732-8893(99)00056-5
  29. L. M. Gottler and A. Ramammorthy, Biochim Biophys Acta, 1778, 1680 (2009).
  30. A. C. Rinaldi, M. L. Mangoni, A. Rufo, C. Luzi, D. Barra, H. Zhao, P. K. Kinnunen, A. Bozzi, A. Di Giulio, and M. Simmaco, Biochem. J., 386, 91 (2002).
  31. J. M. Conlon, J. Kolodziejek, and N. Nowotny, Biochim Biophys Acta, 14, 1 (2004)
  32. M. L. Mangoni, J. M. Saugar, M. Dellisanti, D. Barra, M. Simmaco, and L. Rivas, J. Biol. Chem., 14, 984 (2005).
  33. Y. Rosenfeld, D. Barra, M. Simmaco, Y. Shai, and M. L. Mangoni, J. Biol. Chem., 29, 28565 (2006).
  34. M. L. Mangoni and Y. Shai, Biochimcal et Biophysica Acta, 1788, 1610 (2009). https://doi.org/10.1016/j.bbamem.2009.04.021
  35. R. Capparelli, A. Romanelli, M. Iannaccone, N. Nocerino, R. Ripa, S. Pensato, C. Pedone, and D. Iannelli, PLos One, 28, 7191 (2009).
  36. A. Jemal, R. Siegel, E. Ward, T. Murray, J. Xu, and M. J. Thun CA Cancer J. Clin., 57, 43 (2007). https://doi.org/10.3322/canjclin.57.1.43
  37. M. McCracken, M. Olsen, M. S. Chen Jr., A. Jemal, M. Thun, V. Cokkinides, D. Deapen, and E. Ward, CA Cancer J. Clin., 57, 190 (2007). https://doi.org/10.3322/canjclin.57.4.190
  38. B. W. Stewart and P. L. Kleihues, France, IARC Press (2003).
  39. Y. O. Ahn, Jpn. J. Clin. Oncol., 32 (2002).
  40. S. Y. Shin, S. H. Lee, S. T. Yang, E. J. Park, D. G. Lee, M. K. Lee, S. H. Eom, W. K. Song, Y. Kim, K. S. Hahm, and J. I. Kim J. Peptide Res., 58, 504 (2001). https://doi.org/10.1034/j.1399-3011.2001.00934.x
  41. W. Huang, L. Lu, X. Shao, C. Tang, and X. Zhao, Biotechnol. Lett, 32, 463 (2009).
  42. C. Tang, X. Shao, B. Sun, W. Huang, F. Qiu, Y. Chen, Y. K. Shi, E. Y. Zhang, C. Wang, and X. Zhao, Orq. Biomol. Chem., 7, 984 (2010).
  43. C. Tang, X. Shao, B. Sun, W. Huang, F. Qiu, Y. Chen, Y. K. Shi, E. Y. Zhang, C. Wang, and X. Zhao, Orq. Biomole. Chem., 8, 984 (2010). https://doi.org/10.1039/b920762g
  44. R. Smolarczyk, T. Cichon, W. Kamysz, M. Głowala-Kosińska, A. Szydło, L. Szultka, A. L. Sieron, and S. Szala, Lab Invest, 90, 9 (2010). https://doi.org/10.1038/labinvest.2009.109
  45. A. Hoess, S. Watson, G. R. Siber, and R. Liddington, EMBO J., 12, 3351 (1993).
  46. M. G. Vallespi, J. R. Fernandez, I. Torrens, I. Garcia, H. Garay, O. Mendoza, M. Granadillo, V. Falcon, B. Acevedo, R. Ubieta, G. E. Guillen, and O. Reyes, J. Pept. Sci., 16, 40 (2010). https://doi.org/10.1002/psc.1192
  47. R. Wolcott and S. Dowd, Plast Reconstr. Surg., 1, 28 (2011).
  48. A. W. Smith, Advanced Drug Delivery, 57, 1539 (2005). https://doi.org/10.1016/j.addr.2005.04.007
  49. N. Hoiby, T. Bjarnsholt, M. Givskov, S. Molin, and O. Ciofu, Int. J. Antimicrob. Agents, 35, 322 (2010). https://doi.org/10.1016/j.ijantimicag.2009.12.011
  50. S. Y. Hong, J. E. Oh, M. Kwon, M. J. Choi, J. H. Lee, B. L. Lee, H. M. Moon, and K. H. Lee, Antimicrobial Agents Chemotheraty, 42, 2534 (1998).
  51. Y. Liu, L. Wang, X. Zhou, S. Hu, S. Zhang, and H. Wu, Int. J. Antimicrob. Agents, 37, 33 (2011). https://doi.org/10.1016/j.ijantimicag.2010.08.014
  52. J. S. Mader, M. Marcet-Palacios, R. E. Hancock, and R. C. Bleackley, Exp. Cell Res., 15, 531 (2011).
  53. R. Bucki, K. Leszczynska, A. Namiot, and W. Sokołowski, Arch. Immunol. Ther. Exp. (Warsz), 58 (2010).
  54. J. Overhage, A. Campisano, M. Bains, E. C. Torfs, B. H. Rehm, and R. E. Hancock, Infect. Immun., 76, 4176 (2008). https://doi.org/10.1128/IAI.00318-08
  55. M. D. Willcox, E. B. Hume, Y. Aliwarga, N. Kumar, and N. Cole, J. Appl. Microbiol., 105, 1817 (2008). https://doi.org/10.1111/j.1365-2672.2008.03942.x
  56. M. Gabriel, K. Nazmi, E. C. Veerman, A. V. Nieuw Amerongen, and A. Zentner, Bioconjug. Chem., 17, 548 (2006). https://doi.org/10.1021/bc050091v
  57. S. L. Haynie, G. A. Crum, and B. A. Doele, Antimicrob Agents Chemother, 39, 301 (1995). https://doi.org/10.1128/AAC.39.2.301
  58. Y. Yamaguchi, K. Takahashi, B. Z. Zmudzka et al., FASEB J., 20, 1486 (2006). https://doi.org/10.1096/fj.06-5725fje
  59. K. Maeda and M. Hatao, J. Inverst. Dermatol., 122, 503 (2004). https://doi.org/10.1046/j.0022-202X.2004.22223.x
  60. T. Passeron, J. C. Valencia, C. Bertolotto et al., Proc. Natl. Acad. Sci. USA, 104, 13984 (2007). https://doi.org/10.1073/pnas.0705117104
  61. W. Choi, Y. Miyamura, R. Wolber, C. Smuda, W. Reinhold, H. Liu, L. Kolbe, and V. J. Hearing, J. Invest. Dermatol., 130, 1685 (2010). https://doi.org/10.1038/jid.2010.5
  62. R. Cui, H. R. Widlund, E. Feige, J. Y. Lin, D. L. Wilensky, V. E. Igras, J. D'Orazio, C. Y. Fung, C. F. Schanbacher, S. R. Granter, and D. E. Fisher, Cell, 128, 853 (2007). https://doi.org/10.1016/j.cell.2006.12.045
  63. M. P. Lupo and A. L. Cole, Dermatologic Theratpy, 20, 343 (2007). https://doi.org/10.1111/j.1529-8019.2007.00148.x
  64. F. X. Maquart, G. Bellon, S. Pasco, and J. C. Monboisse, J. Biol. Chem., 268, 9941 (1993).
  65. M. P. Lupo and A. L. Cole, Dermatol. Ther., 20, 343 (2007). https://doi.org/10.1111/j.1529-8019.2007.00148.x
  66. R. I. Chirita, P. Chaimbault, J. C. Archambault, I. Robert, and C. Elfakir, Anal. Chim. Acta., 641, 95 (2009). https://doi.org/10.1016/j.aca.2009.03.015
  67. D. L. Sachs and J. J. Voorhees, Clin. Pharmacol. Ther., 89, 34 (2011). https://doi.org/10.1038/clpt.2010.259
  68. F. X. Maquart, A. Simeon, S. Pasco, and J. C. Monboisse, J. Soc. Biol., 193, 423 (1999).
  69. C. Blanes-Mira, J. Clemente, G. Jodas, A. Gil, G. Fernandez-Ballester, B. Ponsati, L. Gutierrez, E. Perez-Paya, and A. Ferrer-Montiel, Int. J. Cosmet. Sci., 24, 303 (2002). https://doi.org/10.1046/j.1467-2494.2002.00153.x
  70. B. H Sarmadi and A. Ismail, Peptides, 31, 1949 (2010). https://doi.org/10.1016/j.peptides.2010.06.020
  71. R. J. Elias, S. S. Kellerby, and E. A. Decker, Crit. Rev. Food. Sci. Nutr., 48, 430 (2008). https://doi.org/10.1080/10408390701425615
  72. S. Togashi, N. Takahashi, M. Iwama, S. Watanabe, K. Tamagawa, and T. Fukui, Placenta, 23, 497 (2002). https://doi.org/10.1053/plac.2002.0833