Effects of Thiuram, Thiazole, and Sulfenamide Accelerators on Silica Filled Natural Rubber Compound upon Vulcanization and Mechanical Properties

Thiuram, Thiazole, Sulfenamide계 가황촉진제가 실리카로 충진된 천연고무 복합소재의 가황 및 물성에 미치는 영향

  • Choi, Changyong (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Kim, Seong-Min (Dong Ah Tire & Rubber Co. Ltd) ;
  • Park, Young-Hoon (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Jang, Mi-Kyeong (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Nah, Jae-Woon (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Kim, Kwang-Jea (Dong Ah Tire & Rubber Co. Ltd)
  • 최창용 (순천대학교 공과대학 고분자공학과) ;
  • 김성민 (동아타이어공업(주)) ;
  • 박영훈 (순천대학교 공과대학 고분자공학과) ;
  • 장미경 (순천대학교 공과대학 고분자공학과) ;
  • 나재운 (순천대학교 공과대학 고분자공학과) ;
  • 김광제 (동아타이어공업(주))
  • Received : 2011.04.19
  • Accepted : 2011.05.18
  • Published : 2011.08.10

Abstract

Various types of accelerators, thiuram (TMTD, DPTT), thiazole (MBT, MBTS), and sulfenamide (CBS, NOBS) are added into a silica filled natural rubber compound. Their effects on vulcanization and mechanical properties are investigated. TMTD showed the fastest vulcanization rate, the higer maximum torque ($T_{max}$), and the excellent mechanical properties (300% modulus, tensile strength, elongation). MBT and MBTS showed an intermediate vulcanization rate between thiuram and sulfenamide type and added ones, and also showed the lower $T_{max}$ and mechanical properties compared to that of other compounds. Finally, NOBS showed the slowest vulcanization rate and the lower mechanical property but the moderate $T_{max}$.

References

  1. C. Goodyear, U. S. Patent 3,633 (1844).
  2. L. Bateman, C. G. Moore, M. Porter, and B. Saville, The Chemistry and Physics of Rubber like Substances, ed., L. Bateman, Chapter 19, John Wiley and Sons, New York (1963).
  3. S. B. Molony, U. S. Patent 1,343,224 (1920).
  4. M. L. Weiss, U. S. Patent 1,411,231 (1922).
  5. C. W. Bedford, U. S. Patent 1,371,662 (1921).
  6. L. B. Sebrell and C. W. Bedford, U. S. Patent 1,544,687 (1925).
  7. G. Bruni and E. Romani, Indian Rubber Journal, 62 (1921).
  8. E. Zaucker, M. Bogemann, and L. Orthner, U. S. Patent 1,942,790 (1934).
  9. M. W. Harman, U. S. Patent 2,100,692 (1937).
  10. F. W. Barlow, Rubber compounding: principles, materials, and techniques, CRC Press, New York (1993).
  11. A. Y. Coran and J. E. Kerwood, U. S. Patent 3,546,185 (1970).
  12. R. Rauline, Michelin, EUR Patent EP0501, 227 (1991).
  13. M. P. Wagner, Rubber Chem. Technol., 49, 703 (1976). https://doi.org/10.5254/1.3534979
  14. S. Wolff, Kautsch. Gummi Kunstst, 34, 280 (1981).
  15. S. Wolff, Rubber Chem. Technol., 55, 967 (1982). https://doi.org/10.5254/1.3535926
  16. E. P. Plueddemann, Silane Coupling Agents, Plenum Press, New York (1982).
  17. K. J. Kim and J. Vanderkooi, Kautsch. Gummi Kunstst., 55, 518 (2002).
  18. K. J. Kim and J. Vanderkooi, Int. Polym. Proc., 17, 192 (2002). https://doi.org/10.3139/217.1700
  19. K. J. Kim and J. Vanderkooi, Composite Interfaces, 11, 471 (2004). https://doi.org/10.1163/1568554042722946
  20. K. J. Kim and J. Vanderkooi, J. Korean Ind. Eng. Chem., 10, 772 (2004).
  21. K. J. Kim and J. Vanderkooi, Rubber Chem. Technol., 78, 84 (2005). https://doi.org/10.5254/1.3547875
  22. K. J. Kim and J. Vanderkooi, J. Appl. Polym. Sci., 95, 623 (2005). https://doi.org/10.1002/app.21373
  23. A. Y. Coran, in Science and Technology of Rubber, J. E. Mark, B. Erman, and F. R. Eirich (Eds.), 3rd ed., Chapter 7, Academic Press, New York (2005).
  24. R. K. Gupta, E. Kennal, and K. J. Kim, Polymer Nanocomposites Handbook, CRC Press, Boca Raton (2009).
  25. K. J. Kim, Carbon Letters, 10, 101 (2009). https://doi.org/10.5714/CL.2009.10.2.101
  26. K. J. Kim, Carbon Letters, 10, 109 (2009). https://doi.org/10.5714/CL.2009.10.2.109
  27. K. J. Kim and J. L. White, J. Korean Ind. Eng. Chem., 7, 50 (2001).
  28. K. J. Kim, Elastomers and Composites, 44, 134 (2009).
  29. D. K. Jeon and K. J. Kim, Elastomers and Composites, 44, 252 (2009).
  30. A. Y. Coran, Rubber Chem. Technol., 38, 1 (1965). https://doi.org/10.5254/1.3535628
  31. M. M. Coleman, J. R. Shelton, and J. K. Koening, Rubber Chem. Technol., 46, 957 (1973). https://doi.org/10.5254/1.3547420
  32. B. A. Dogadkin, V. Selyukova, Z. Tarasova, A. B. Dobromyslova, M. S. Feldshtein, and M. Kaplunov, Rubber Chem. Technol., 31, 348 (1958). https://doi.org/10.5254/1.3542283
  33. B. A. Dogadkin, O. N. Beliatskaya, A. B. Dobromyslova, and M. S. Feldshtein, Rubber Chem. Technol., 33, 361 (1960). https://doi.org/10.5254/1.3542152
  34. M. H. S. Gradwell and W. J. McGill, J. Appl. Polym. Sci., 51, 177 (1994). https://doi.org/10.1002/app.1994.070510118
  35. M. H. S. Gradwell and W. J. McGill, J. Appl. Polym. Sci., 51, 169 (1994). https://doi.org/10.1002/app.1994.070510117
  36. M. H. S. Gradwell, K. G. Hendrikse, and W. J. McGill, J. Appl. Polym. Sci., 72, 1235 (1999). https://doi.org/10.1002/(SICI)1097-4628(19990606)72:10<1235::AID-APP1>3.0.CO;2-O
  37. A. Y. Coran, Rubber Chem. Technol., 37, 679 (1964). https://doi.org/10.5254/1.3540360
  38. M. H. S. Gradwell and W. J. McGill, J. Appl. Polym. Sci., 58, 2193 (1995). https://doi.org/10.1002/app.1995.070581206
  39. M. H. S. Gradwell and W. J. McGill, J. Appl. Polym. Sci., 61, 1131 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960815)61:7<1131::AID-APP9>3.0.CO;2-N
  40. M. H. S. Gradwell and W. J. McGill, J. Appl. Polym. Sci., 61, 1515 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960829)61:9<1515::AID-APP11>3.0.CO;2-P
  41. F. W. H. Kruger and W. J. McGill, J. Appl. Polym. Sci., 42, 2643 (1991). https://doi.org/10.1002/app.1991.070421002
  42. F. W. H. Kruger and W. J. McGill, J. Appl. Polym. Sci., 42, 2661 (1991). https://doi.org/10.1002/app.1991.070421004
  43. F. W. H. Kruger and W. J. McGill, J. Appl. Polym. Sci., 42, 2669 (1991). https://doi.org/10.1002/app.1991.070421005
  44. K. J. Kim and J. Vanderkooi, Int. Polym. Proc., 18, 156 (2003). https://doi.org/10.3139/217.1734