Preparation and Electrochemical Characterization of Activated Carbon Electrode by Amino-fluorination

아미노불소화 반응에 의한 활성탄소전극 제조 및 전기화학적 특성

  • Lim, Jae Won (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Jeong, Euigyung (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Jung, Min Jung (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Lee, Sang Ick (Carbon Materials Development Team, Value Creation Center, GS Caltex Corporation) ;
  • Lee, Young-Seak (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University)
  • 임재원 (충남대학교 공과대학 정밀응용화학과) ;
  • 정의경 (충남대학교 공과대학 정밀응용화학과) ;
  • 정민정 (충남대학교 공과대학 정밀응용화학과) ;
  • 이상익 ((주)GS칼텍스) ;
  • 이영석 (충남대학교 공과대학 정밀응용화학과)
  • Received : 2011.04.19
  • Accepted : 2011.05.14
  • Published : 2011.08.10

Abstract

High-performance of an electric double layer capacitance (EDLC) electrode was prepared by the amino-fluorination of activated carbon by using $NF_3$ gas. The pore structure and surface chemistry were investigated based on the specific capacitance of EDLC. The amino-fluorination of activated carbon introduced functional groups of nitrogen and fluorine which are beneficial for the specific capacitance of EDLC without the change of pore structures. The E-NF100AC electrode, which has nitrogen and fluorine functional groups less than 1 at%, showed the highly improved specific capacitance of 528 (${\pm}9$) F/g at 2 mV/s showing 122% improved value when comparing with that of non-functionalized E-RAC electrodes. Whereas, the E-NF200AC electrode, which has nitrogen and fluorine functional groups over 1 at%, showed the decreased specific capacitance because of perfluorinated introduction. So, it is concluded that the proper contents of nitrogen and fluorine groups improved the specific capacitance of EDLC.

Acknowledgement

Grant : 표면기능화 반응을 이용한 고출력 음극소재 개발

References

  1. J. K. Sun, E. H. Um, and C. T. Lee, Appl. Chem. Eng., 21, 11 (2010).
  2. C. T. Lee, J. H. Kim, and B. W. Cho, Prospectives Ind. Chem., 2, 16 (1999).
  3. T. Weng and H. Teng, J. Electrochem. Soc., 148, 4 (2001).
  4. K. Y. Kang, S. J. Hong, B. I. Lee, and J. S. Lee, Electrochem. Commun., 10, 1105 (2008). https://doi.org/10.1016/j.elecom.2008.05.029
  5. A. S. Arico, P. Bruce, J. M. Tarascon, and W. Van-Schalkwijk, Nature Mater., 4, 366 (2005). https://doi.org/10.1038/nmat1368
  6. F. Beguin, K. Szostak, and G. Lota, Frackowiak Adv. Mater., 17, 2380 (2005). https://doi.org/10.1002/adma.200402103
  7. Y. J. Kim, Y. Abe, T. Yanagiura, K. C. Park, M. Shimizu, T. Iwazaki, S. Nakagawa, M. Endo, and M. S. Dresselhaus, Carbon, 45, 2116 (2007). https://doi.org/10.1016/j.carbon.2007.05.026
  8. M. K. Seo and S. J. Park, Curr. Appl. Phys., 10, 241 (2010). https://doi.org/10.1016/j.cap.2009.05.031
  9. X. L. Chen, W. S. Li, C. L. Tan, W. Li, and Y. Z. Wu, J. Power Sources, 184, 668 (2008). https://doi.org/10.1016/j.jpowsour.2008.05.073
  10. K. Jurewicz, K. Babel, A. Ziolkowski, and H. Wachowska, J. Physics and Chem. Solids, 65, 269 (2004). https://doi.org/10.1016/j.jpcs.2003.10.023
  11. D. W. Wang, F. Li, M. Liu, and H. M. Cheng, New Carbon Mater., 22, 307 (2007). https://doi.org/10.1016/S1872-5805(08)60002-5
  12. J. I. Kim, I. J. Kim, and S. J. Park, J. Korean Chem. Soc., 54, 93 (2010). https://doi.org/10.5012/jkcs.2010.54.01.093
  13. J. Chmiola, G. Yushin, R. Dash, and Y. Gogosti, J. Power Sources, 158, 765 (2006). https://doi.org/10.1016/j.jpowsour.2005.09.008
  14. S. J. Gregg and K. S. W. Sing, Adsorption Surface Area and Porosity, second ed., 195, Academy Press, London (1982).
  15. T. W. Little and F. S. Ohuchi, Surf. Sci., 445, 235 (2000). https://doi.org/10.1016/S0039-6028(99)01061-4
  16. J. S. Im, S. M. Yun, Y. C. Nho, P. H. Kang, H. K. Jin, and Y. S. Lee, Carbon Lett., 10, 314 (2009). https://doi.org/10.5714/CL.2009.10.4.314
  17. J. S. Im, I. J. Park, S. J. In, T. J. Kim, and Y. S. Lee, J. Fluor. Chem., 130, 1111 (2009). https://doi.org/10.1016/j.jfluchem.2009.06.022
  18. H. Oda, A. Yamashita, S. Minoura, M. Okamoto, and T. Morimoto, J. Power Sources, 158, 1510 (2006). https://doi.org/10.1016/j.jpowsour.2005.10.061
  19. K. Yamamoto, Y. Koga, and S. Fujiwara, Jpn. J. Appl. Phys., 40, L123 (2001). https://doi.org/10.1143/JJAP.40.L123
  20. I. S Lim, S. H. Yoo, I. N. Park, and Y. S. Lee, Carbon Letters, 5, 12 (2004).
  21. E. Raymundo-Pinero, D. Cazorla-Amoros, and A. Linares-Solano, Carbon, 41, 1925 (2003). https://doi.org/10.1016/S0008-6223(03)00180-5
  22. J. N. Kim, M. K. Choi, and R. Ryoo, Bull. Korean Chem. Soc., 29, 413 (2008). https://doi.org/10.5012/bkcs.2008.29.2.413
  23. G. Lota, B. Grzyb, H. Machnikowska, J. Machnikowski, and E. Frackowiak, Chem. Phys. Lett., 404, 53 (2005). https://doi.org/10.1016/j.cplett.2005.01.074
  24. E. Frackowiak, Phys. Chem. Chem. Phys., 9, 1774 (2007). https://doi.org/10.1039/b618139m
  25. J. M. Lee, S. J. Kim, J. W. Kim, P. H. Kang, Y. C. Nho, and Y. S. Lee, J. Ind. Eng. Chem., 15, 66 (2009). https://doi.org/10.1016/j.jiec.2008.08.010
  26. H. Touhara and F. Okino, Carbon, 38, 241 (2000). https://doi.org/10.1016/S0008-6223(99)00140-2
  27. E. R. Thomas, H. J. Denisa, Z. Zhonghua, and G. Q. Lu, Electrochem. Commun., 10, 1594 (2008). https://doi.org/10.1016/j.elecom.2008.08.022
  28. M. Ramani, B. S. Haran, R. E. White, and B. N. Popov, J. Electrochem. Soc., 148, A374 (2001). https://doi.org/10.1149/1.1357172
  29. J. Giraudet, M. Dubois, K. Guerin, C. Delabarre, A. Hamwi, and F. Masin, J. Phys. Chem. B, 111, 14143 (2007). https://doi.org/10.1021/jp076170g