Synthesis and Characterization of Interfacial Properties of Glycerol Surfactant

글리세롤계 계면활성제 합성 및 계면 특성에 관한 연구

  • Lim, JongChoo (Department of Chemical and Biochemical Engineering, Dongguk University-Seoul) ;
  • Lee, Seul (Department of Chemical and Biochemical Engineering, Dongguk University-Seoul) ;
  • Kim, ByeongJo (AK ChemTech Central Research Lab.) ;
  • Lee, JongGi (AK ChemTech Central Research Lab.) ;
  • Choi, KyuYong (AK ChemTech Central Research Lab.)
  • 임종주 (동국대학교 공과대학 화공생물공학과) ;
  • 이슬 (동국대학교 공과대학 화공생물공학과) ;
  • 김병조 (에이케이켐텍(주) 중앙연구소) ;
  • 이종기 (에이케이켐텍(주) 중앙연구소) ;
  • 최규용 (에이케이켐텍(주) 중앙연구소)
  • Received : 2011.03.21
  • Accepted : 2011.05.03
  • Published : 2011.08.10

Abstract

The CMCs of LA and LA3 nonionic surfactants obtained from the reaction between glycidol and lauryl alcohol were found to be $0.97{\times}10^{-3}mol/L$ and $1.02{\times}10^{-3}mol/L$ respectively and the surface tensions for 1 wt% surfactant were 26.99 and 27.48 mN/m respectively. Dynamic surface tension measurements using a maximum bubble pressure tensiometer showed that the adsorption rate of surfactant molecules at the interface between the air and the surfactant solution was found to be relatively fast in both surfactant systems, presumably due to the high mobility of surfactant molecules. The contact angles of LA and LA3 nonionic surfactants were 27.8 and $20.9^{\circ}$ respectively and the dynamic interfacial tension measurement by a spinning drop tensiometer showed that interfacial tensions at equilibrium condition in both systems were almost the same. Also both surfactant systems reached equilibrium in 2~3 min. Both surfactant solutions showed high stability when evaluated by conductometric method and the LA nonionic surfactant system provided the higher foam stability than the LA3 nonionic surfactant system. The phase behavior experiments showed a lower phase or oil in water (O/W) microemulsion in equilibrium with an excess oil phase at all temperatures studied. No three-phase region was observed including a middle-phase microemulsion or a lamellar liquid crystalline phase.

Acknowledgement

Supported by : 한국연구재단

References

  1. W. G. Cutler and E. Kissa, Detergency : Theory and Technology, Surfactant Science Series, 20, 1, Marcel Dekker, New York (1987).
  2. A. M. Schwartz, The Physical Chemistry of Detergency ed. E. Matijevic, Surface Colloid Sci., 195, Wiley, New York (1972).
  3. C. A. Miller and P. Neogi, Interfacial Phenomena : Equilibrium and Dynamic Effects, Surfactant Science Serie, 17, 150, Marcel Dekker, New York, (1985).
  4. J. C. Lim, J. Korean Ind. Eng. Chem., 6, 610 (1995).
  5. J. C. Lim, J. Korean Ind. Eng. Chem., 8, 473 (1997).
  6. S. K. Lee, J. W. Han, B. H. Kim, P. G. Shin, S. K. Park, and J. C. Lim, J. Korean Ind. Eng. Chem., 10, 537 (1999). https://doi.org/10.1007/s100510050883
  7. H. K. Ko, B. D. Park, and J. C. Lim, J. Korean Ind. Eng. Chem., 11, 679 (2000).
  8. J. G. Lee, S. S. Bae, I. S. Cho, S. J. Park, B. D. Park, S. K. Park, and J. C. Lim, J. Korean Ind. Eng. Chem., 16, 664 (2005).
  9. J. G. Lee, S. S. Bae, I. S. Cho, S. J. Park, B. D. Park, S. K. Park, and J. C. Lim, J. Korean Ind. Eng. Chem., 16, 677 (2005).
  10. J. C. Lim, J. Korean Ind. Eng. Chem., 16, 778 (2005).
  11. S. Lee, B. J. Kim, J. G. Lee, and J. C. Lim, J. Korean Ind. Eng. Chem., 16, 778 (2011).
  12. M. Franska, R. Franski, A. Szymanski, and Z. Lukaszewski, Water Res., 37, 1005 (2003). https://doi.org/10.1016/S0043-1354(02)00444-X
  13. P. F. X. Corvini, A. Schaffer, and D. Schlosser, App. Microbiol Biotechnol., 72, 223 (2006). https://doi.org/10.1007/s00253-006-0476-5
  14. C. A. Staples, C. G. Naylor, J. B. Williams, and W. E. Gledhill, Environ. Toxicol. Chem., 20, 2450 (2001). https://doi.org/10.1002/etc.5620201108
  15. A. Soares, B. Guieysse, B. Jefferson, E. Cartmell, and J. N. Lester, Environ. Int., 34, 1033 (2008) https://doi.org/10.1016/j.envint.2008.01.004
  16. M. S. Holt, E. H. McKerrell, J. Perry, and R. J. Watkinson, J. Chromatogr., 362, 419 (1986). https://doi.org/10.1016/S0021-9673(01)86995-8
  17. M. Antonio and G. Walter, Anal. Chem., 59, 1709 (1987). https://doi.org/10.1021/ac00140a027
  18. S. H. Im, H. S. Bak, S. H. Noh, S. K. Han, M. J. Rang, and Y. K. Yoon, J. Korean Ind. Eng. Chem., 14, 371 (2003).
  19. M. J. Rang, J. D. Kim, S. G. Oh, B. M. Lee, J. C. Lim, J. D. Hong, H. H. Kang, and J. G. Lee, The Recent Research Trends in Colloid and Surface Chemistry, 45, KOSFT, Seoul (2007).
  20. M. J. Bae and J. C. Lim, J. Korean Ind. Eng. Chem., 20, 15 (2009).
  21. M. J. Bae and J. C. Lim, Korean Chem. Eng. Res., 47, 24 (2009).
  22. M. J. Bae and J. C. Lim, Korean Chem. Eng. Res., 47, 46 (2009).
  23. M. J. Bae and J. C. Lim, J. Korean Ind. Eng. Chem., 20, 473 (2009).
  24. D. J. Mitchell, G. J. T. Tiddy, L. Waring, T. Bostock, and M. P. Macdonald, J. Chem. Soc. Faraday Trans., 79, 975 (1983). https://doi.org/10.1039/f19837900975
  25. O. Ghosh and C. A. Miller, J. Phys. Chem., 91, 4528 (1987). https://doi.org/10.1021/j100301a022