Thermotropic Liquid Crystalline Properties of α,ω-Bis(4-cyanoazobenzene-4'-oxy)alkanes

α,ω-비스(4-사이아노아조벤젠-4'-옥시)알케인들의 열방성 액정 특성

  • Jeong, Seung Yong (Center for Photofunctional Energy Materials, Dankook University) ;
  • Kim, Hyo Gap (Center for Photofunctional Energy Materials, Dankook University) ;
  • Ma, Yung Dae (Center for Photofunctional Energy Materials, Dankook University)
  • 정승용 (단국대학교 광 에너지 연구센터) ;
  • 김효갑 (단국대학교 광 에너지 연구센터) ;
  • 마영대 (단국대학교 광 에너지 연구센터)
  • Received : 2011.02.18
  • Accepted : 2011.05.26
  • Published : 2011.08.10

Abstract

A homologous series of linear liquid crystal dimers, the ${\alpha},{\omega}$-bis(4-cyano-azobenzene-4'-oxy)alkanes (CATWETn, where n, the number of methylene units in the spacer, is 2~10) were synthesized, and their thermotropic liquid crystalline phase behavior were investigated. The CATWETn with n of 3 and 6 exhibited monotropic nematic phases, whereas other derivatives showed enantiotropic nematic phases. The nematic-isotropic transition temperatures of the dimers and their entropy variation at the phase transition showed a large odd-even effect as a function of n. This phase transition behavior was rationalized in terms of the change in the average shape of the spacer on varying the parity of the spacer. The thermal stability and degree of order in the nematic phase and the magnitude of the odd-even effect of CATWETn were similar to those for the methoxy-, nitro-, and pentyl-substituted dimers, while they were significantly different from those for the monomesogenic compounds, 1-{4-(4'-cyanophenylazo)phenoxy}alkylbromides and the side-chain liquid-crystalline polymers, the poly[1-{4-(4'-cyanophenylazo)phenoxyalkyloxy}ethylene]s. The results were discussed in terms of 'virtual trimer model' by Imrie.

Acknowledgement

Supported by : 경기도지역협력센터

References

  1. Y. Yu and T. Ikeda, J. Photochem. Photobiol. C: Photochem. Rev., 5, 247 (2004). https://doi.org/10.1016/j.jphotochemrev.2004.10.004
  2. C. J. Barrett, J. Mamiya, K. G. Yager, and T. Ikeda, Soft Matter, 3, 1249 (2007). https://doi.org/10.1039/b705619b
  3. T. Ikeda, J. Mamiya, and Y. Yu, Angew. Chem. Int. Ed., 46, 506 (2007). https://doi.org/10.1002/anie.200602372
  4. T. Yoshino, M. Kondo, J. Mamiya, M. Kinoshita, Y. Yu, and T. Ikeda, Adv. Mater., 22, 1361 (2010). https://doi.org/10.1002/adma.200902879
  5. N. Tamaoki and T. Kamei, J. Photochem. Photobiol. C: Photochem. Rev., 11, 47 (2010). https://doi.org/10.1016/j.jphotochemrev.2010.09.001
  6. J. I. Jin, Mol. Cryst. Liq. Cryst., 267, 249 (1995). https://doi.org/10.1080/10587259508034002
  7. C. T. Imrie and G. R. Luckhurst, Handbook of Liquid Crystals, eds. D. Demus, G. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, 2B, 801, Wiley-VCH, Weinheim-New York (1998).
  8. C. T. Imrie and P. A. Henderson, Chem. Soc. Rev., 36, 2096 (2007). https://doi.org/10.1039/b714102e
  9. C. T. Imrie, P. A. Henderson, and G.-Y. Yeap, Liq. Cryst., 36, 755 (2009). https://doi.org/10.1080/02678290903157455
  10. T. Donaldson, H. Staesche, Z. B. Lu, P. A. Henderson, M. F. Achard, and C. T. Imrie, Liq. Cryst., 37, 1097 (2010). https://doi.org/10.1080/02678292.2010.494412
  11. S.-Y. Jeong, H.-G. Kim, H.-S. Jung, and Y.-D. Ma, Chemical Materials (Dankook University), 6, 27 (2009).
  12. P. A. Henderson, A. G. Cook, and C. T. Imrie, Liq. Cryst., 31, 1427 (2004). https://doi.org/10.1080/02678290412331298067
  13. S. K. Prasad, K. L. Sandhya, G. G. Nair, U. S. Hiremath, and C. V. Yelamaggad, J. Appl. Phys., 92, 838 (2002). https://doi.org/10.1063/1.1488244
  14. G. S. Attard, S. Garnett, C. G. Hickman, C. T. Imrie, and L. Taylor, Liq. Cryst., 7, 495 (1990). https://doi.org/10.1080/02678299008033826
  15. A. E. Blatch and G. R. Luckhurst, Liq. Cryst., 27, 775 (2000). https://doi.org/10.1080/026782900202264
  16. T. Niori, S. Adachi, and J. Watanabe, Liq. Cryst., 19, 139 (1995). https://doi.org/10.1080/02678299508036731
  17. M. Moriyama and N. Tamaoki, Chem. Lett., 1142 (2001).
  18. V. A. Mallia and N. Tamaoki, Chem. Mater., 15, 3237 (2003). https://doi.org/10.1021/cm034127+
  19. V. A. Mallia and N. Tamaoki, J. Mater. Chem., 13, 219 (2003). https://doi.org/10.1039/b210541a
  20. N. Tamaoki, Y. Aoki, M. Moriyama, and M. Kidowaki, Chem. Mater., 15, 719 (2003). https://doi.org/10.1021/cm020234c
  21. S. Kumaresan, V. A. Mallia, Y. Kida, and N. Tamaoki, J. Mater. Res., 20, 3431 (2005). https://doi.org/10.1557/jmr.2005.0426
  22. C. V. Yelamaggad, G. Shanker, U. S. Hiremath, and S. Krishna Prasad, J. Mater. Chem., 18, 2927 (2008). https://doi.org/10.1039/b804579h
  23. C. Wu, Mater. Lett., 61, 1380 (2007). https://doi.org/10.1016/j.matlet.2006.07.035
  24. S.-W. Cha, J.-I. Jin, M. Laguerre, M. F. Achard, and F. Hardouin, Liq. Cryst., 26, 1325 (1999). https://doi.org/10.1080/026782999203995
  25. J.-W. Lee, Y. Park, J.-I. Jin, M. F. Achard, and F. Hardouin, J. Mater. Chem., 13, 1367 (2003). https://doi.org/10.1039/b211932c
  26. K.-N. Kim, E.-D. Do, Y.-W. Kwon, and J.-I. Jin, Liq. Cryst., 32, 229 (2005). https://doi.org/10.1080/02678290412331329305
  27. W.-K. Lee, K.-N. Kim, M. F. Achard, and J.-I. Jin, J. Mater. Chem., 16, 2289 (2006). https://doi.org/10.1039/b516141j
  28. K. Zygadlo, D. Dardas, K. Nowicka, J. Hofmann, and Z, Galewski, Mol. Cryst. Liq. Cryst., 509, 283 (2009).
  29. B.-K. So, H.-J. Kim, S.-M. Lee, H.-H. Song, and J.-H. Park, Dyes and Pigments, 70, 38 (2006). https://doi.org/10.1016/j.dyepig.2005.04.006
  30. B. Bai, H. Wang, H. Xin, J. Shi, B. Long, and M. Li, J. Phys. Org. Chem., 20, 589 (2007). https://doi.org/10.1002/poc.1211
  31. B. Bai, H. Wang, S. Qu, F. Li, Z. Yu, B. Long, and M. Li, Liq. Cryst., 35, 793 (2008). https://doi.org/10.1080/02678290802187264
  32. A. A. Salisu, M. Z. Ab. Rahman, S. Silong, M. Bin Ahmad, and M. R. Lutfor, Mol. Cryst. Liq. Cryst., 509, 134 (2009).
  33. K. Ichimura, Chem. Rev., 100, 1847 (2000). https://doi.org/10.1021/cr980079e
  34. J.-C. Dubois, P. L. Barny, M. Mauzac, and C. Noel, Handbook of Liquid Crystals, eds. D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, 3, 207, Wiley-VCH, Weinheim-New York (1998).
  35. V. Shibaev, A. Bobrovsky, and N. Boiko, Prog. Polym. Sci., 28, 729 (2003). https://doi.org/10.1016/S0079-6700(02)00086-2
  36. V. Percec and C. Pugh, Side Chain Liquid Crystal Polymers, ed. C. B. McArdle, 30, Chapman and Hall, New York (1989).
  37. A. Natansohn and P. Rochon, Chem. Rev., 102, 4139 (2002). https://doi.org/10.1021/cr970155y
  38. C. T. Imrie, F. E. Karasz, and G. S. Attard, Macromoleules, 26, 545 (1993). https://doi.org/10.1021/ma00055a021
  39. M. Li, E. Zhou, J. Xu, and X. Chen, J. Appl. Polym. Sci., 60, 2185 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960620)60:12<2185::AID-APP16>3.0.CO;2-6
  40. M. Ratloh, J. Stumpe, L. Stachanov, S. Kostromin, and V. Shibaev, Mol. Cryst. Liq. Cryst., 352, 149 (2000). https://doi.org/10.1080/10587250008023172
  41. A. A. Craig, I. Winchester, P. C. Madden, P. Larcey, I. W. Hamley, and C. T. Imrie, Polymer, 39, 1197 (1998). https://doi.org/10.1016/S0032-3861(97)00394-7
  42. J-H. Liu and C.-D. Hsieh, J. Appl. Polym. Sci., 99, 2443 (2006). https://doi.org/10.1002/app.22776
  43. X. Li, R. Wen, Y. Zhang, L. Zhu, B. Zhang, and H. Zhang, J. Mater. Chem., 19, 236 (2009). https://doi.org/10.1039/b812291a
  44. Z. Zheng, J. Xu, Y. Sun, J. Zhou, B. Chen, Q. Zhang, and K. Wang, J. Polym. Sci. Part A: Polm. Chem., 44, 3210 (2006). https://doi.org/10.1002/pola.21398
  45. C. Cojocariu and P. Rochon, Macromolecules, 38, 9526 (2005). https://doi.org/10.1021/ma051455h
  46. S. Freiberg, F. Langugne-Labarthet, P. Rochon, and A. Natansohn, Macromoleules, 36, 2680 (2003). https://doi.org/10.1021/ma021384b
  47. S.-Y. Jeong and Y.-D. Ma, Polymer (Korea), 32, 489 (2008).
  48. S.-Y. Jeong and Y.-D. Ma, J. Korean Ind. Eng. Chem., 19, 504 (2008).
  49. S.-Y. Jeong, D.-J. Hwang, and Y.-D. Ma, Appl. Chem. Eng., 21, 230 (2010).
  50. S.-Y. Jeong, J.-Y. Lee, and Y.-D. Ma, Polymer (Korea), 33, 297 (2009).
  51. U. Hrozhyk, S. Serak, N. Tabiryan, and T. J. Bunning, Mol. Cryst. Liq. Cryst., 454, 235 (2006).
  52. G. W. Gray, Liquid Crystals and Plastic Crystals, eds. G. W. Gray and P. A. Winsor, 1, 103, Ellis Harwood, Chichester, London (1974).
  53. G. W. Gray, The Molecular Physics of Liquid Crystals, eds. G. R. Luckhurst and G. W. Gray, 1, Academic Press, New York (1979).
  54. Ya. S. Freidzon and V. P. Shibaev, Liquid-Crystal Polymers, ed. N. A. Plate, 251, Plenum Press, New York and London (1993).
  55. C. T. Imrie, F. E. Karasz, and G. S. Attard, Macromoleules, 26, 3803 (1993). https://doi.org/10.1021/ma00067a013
  56. S.-Y. Jeong and Y.-D. Ma, Polymer (Korea), 30, 35 (2006).
  57. T. Tanaka, T. Fukuda, J. Watanabe, and T. Miyamoto, Macromolecules, 28, 3394 (1995). https://doi.org/10.1021/ma00113a045
  58. W. Maier and A. Saupe, Z. Naturf, 14a, 882 (1959)
  59. W, Maier and A. Saupe, Z. Naturf, 15a, 287 (1960).
  60. L. Onsager, Ann. N. Y. Acad. Sci., 51, 627 (1949). https://doi.org/10.1111/j.1749-6632.1949.tb27296.x
  61. G. Vertogen and W. H. de Jeu, Thermotropic Liquid Crystals, Fundamentals, 245, Springer-Verlag, Berlin Heidelberg (1988).
  62. S. Chandrasekhar, Liquid Crystals, 17, Cambridge University Press (1992).
  63. W. H. de Jeu, J. van der Veen, and W. J. A. Goosens, Solid State Commun., 12, 405 (1973). https://doi.org/10.1016/0038-1098(73)90783-7
  64. V. Percec, A. D. Asandei, D. H. Hill, and D. Crawford, Macromoleules, 32, 2597 (1999). https://doi.org/10.1021/ma9900129
  65. A. A. Craig and C. T. Imrie, J. Mater. Chem., 4, 1705 (1994). https://doi.org/10.1039/jm9940401705
  66. F. Dowell and D. E. Martie, J. Chem. Phys., 68, 1094 (1979).
  67. P. A. Henderson, O. Niemeyer, and C. T. Imrie, Liq. Cryst., 28, 463 (2001). https://doi.org/10.1080/02678290010007558
  68. A. E. Blatch, I. D. Fletcher, and G. R. Luckhurst, J. Mater. Chem., 7, 9 (1997). https://doi.org/10.1039/a602980i