Syntheses and Characterization of Polyurethane Polymers with Versatile Stilbene Chromophores

Stilbene 발광 유도체를 가지는 Polyurethane을 기본으로 하는 고분자의 합성 및 특성

  • Jin, Youngeup (Department of Industrial Chemistry, Pukyong National University) ;
  • Noh, Ji Young (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Park, Seong Soo (Department of Industrial Chemistry, Pukyong National University) ;
  • Ju, Changsik (Department of Chemical Engineering, Pukyong National University) ;
  • Suh, Hongsuk (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University)
  • 진영읍 (부경대학교 공업화학과) ;
  • 노지영 (부산대학교 화학과, 기능성 물질 화학 연구소) ;
  • 박성수 (부경대학교 공업화학과) ;
  • 주창식 (부경대학교 화학공학과) ;
  • 서홍석 (부산대학교 화학과, 기능성 물질 화학 연구소)
  • Received : 2011.06.09
  • Accepted : 2011.07.16
  • Published : 2011.08.10

Abstract

In this research, we have synthesized new pendant-type polyurethane polymers by introducing various chromophores with stilbene derivatives in the side-chain of the polymer backbone. The Stilbene monomers, N,N-bis(2-hydroxyethyl) amino-4'-cyanostilbene, N,N-bis(2-hydroxyethyl)amino-4'-methoxy stilbene, N,N-bis(2-hydroxyethyl)amino-4'-acetylstilbene, and N,N-bis(2-hydroxyethyl) amino stilbene, were synthesized by Wittig reaction. Another stilbene monomer, N,N-bis(2-hydroxyethyl)amino-4'-nitrostilbene, was synthesized by Knoevenagel condensation. By the measurement of UV-Vis absorption and Photoluminescence (PL) spectrum, we found that introduction of the electron-withdrawing group as a substituent shifts both UV-Vis and PL spectra to longer wavelength, and the introduction of the electron-donating group results in blue-shift of the spectrum. In case of polymer with $NO_2$ group as a substituent, PL is quenched.

Acknowledgement

Supported by : 한국연구재단

References

  1. M. T. Bernius, M. Inbasekaran, J. O'Brien, and W. Wu, Adv. Mater., 12, 1737 (2000). https://doi.org/10.1002/1521-4095(200012)12:23<1737::AID-ADMA1737>3.0.CO;2-N
  2. L. Zhang, C. Di, G. Yu, and Y. Liu, J. Mater. Chem., 20, 7059 (2010). https://doi.org/10.1039/c0jm00331j
  3. T. W. Lee, Y. Chung, O. Kwon, and J. J. Park, Adv. Funct. Mater., 17, 390 (2007). https://doi.org/10.1002/adfm.200600278
  4. S. H. Park, S. Cho, J. K. Lee, K. Lee, and A. J. Heeger, Org. Electron., 10, 426 (2009). https://doi.org/10.1016/j.orgel.2009.01.008
  5. J. H. Kim, J. Heo, Y. Y. Lee, B. H. Kim, G. D. Lee, S. S. Hong, and S. S. Park, J. Korean Ind. Eng. Chem., 20, 46 (2009).
  6. T. Tsutsui, E. Aminaka, Y. Hamada, C. Adachi, and S. Saito, Proc. SPIE, 191, 180 (1993).
  7. G. Gustaffsson, Y. Cao, M. Tracy, F. Klavetter, N. Colaneri, and A. J. Heeger, Nature, 375, 477 (1992).
  8. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, and A. B. Holmes, Nature, 347, 539 (1990). https://doi.org/10.1038/347539a0
  9. G. Grem, G. Leditzky, B. Ullrich, and G. Leising, Adv. Mater., 4, 32 (1992).
  10. H. Patel, and S. Patel, J. Macromol. Sci. Chem., A21, 343 (1984).
  11. T. Yen, M. Devar, and A. Rembaum, J. Macromol. Sci. Chem., 4, 693 (1970). https://doi.org/10.1080/00222337008074371
  12. H. Lim, J. Y. Noh, G. H. Lee, S. E. Lee, H. Jeong, K. Lee, M. Cha, H. Suh, and C. S. Ha, Thin Solid Films, 363, 152 (2000). https://doi.org/10.1016/S0040-6090(99)01030-5
  13. Y. Jin, J. Ju, J. Kim, S. Lee, J. Y. Kim, S. H. Park, S. M. Son, S. H. Jin, K. Lee, and H. Suh, Macromolecules, 36, 6970 (2003). https://doi.org/10.1021/ma025862u
  14. Y. Jin, K. Kim, S. H. Park, S. Song, J. Kim, J. Jung, K. Kim, and H. Suh, Macromolecules, 40, 6799 (2007). https://doi.org/10.1021/ma071074z