Characteristics of Lignin Removal in Cellulosic Ethanol Production Process

셀룰로오스 에탄올 생산공정에서 리그닌의 제거특성

  • Lee, You-Na (Division of Energy & Biological Engineering, Kyungwon University) ;
  • Lee, Seung-Bum (Division of Energy & Biological Engineering, Kyungwon University) ;
  • Lee, Jae-Dong (Division of Energy & Biological Engineering, Kyungwon University)
  • 이유나 (경원대학교 환경에너지공학전공) ;
  • 이승범 (경원대학교 환경에너지공학전공) ;
  • 이재동 (경원대학교 환경에너지공학전공)
  • Received : 2010.10.14
  • Accepted : 2010.11.12
  • Published : 2011.02.10

Abstract

In this study, we measured changes in the lignin content of acidified lignocellulosic biomass such as rice straw, saw dust, chestnut shell and peanut hull and analyzed the conversion property to cellulosic ethanol. It turns out that the lignin content increases in chestnut shell, rice straw, saw dust, peanut hull order and the conversion property to cellulosic ethanol is superior in the reverse order. Thus, the removal of lignin by acidification is necessary. In addition, as the concentration of sulfuric acid increases, the lignin content decreases and the yield of cellulosic ethanol increased. The optimum concentration of sulfuric acid is 20 wt%.

Acknowledgement

Supported by : 경원대학교

References

  1. T. B. Vinzant, L. Ponfick, N. J. Nagle, C. I. Ehrman, J. B. Renolds, and M. E. Himmel, Appl. Biochem. Biotechnol., 45, 611 (1994). https://doi.org/10.1007/BF02941834
  2. Q. A. Nguyen, J. H. Dickow, B. W. Duff, J. D. Farmer, D. A. Glassner, K. N. Ibsen, M. F. Ruth, D. J. Schell, I. B. Thompson, and M. P. Tucker, Bioresour. Technol., 58, 189 (1996). https://doi.org/10.1016/S0960-8524(96)00098-3
  3. T. Y. Chang, R. H. Hammerle, S. M. Japar, and I. T. Salmeen, Environ. Sci. Technol., 25, 1190 (1991). https://doi.org/10.1021/es00019a001
  4. F. H. Palmer, Vehicle Performance of Gasoline Containing Oxygenates, Institution of Mechanical Engineers Conference Publication, MEP, London, U.K., 33 (1986).
  5. S. Ture, D. Uzun, and I. E. Ture, Energy, 22, 17 (1997). https://doi.org/10.1016/0360-5442(95)00024-0
  6. V. B. Harro and M. A. Curran, J. Cleaner Prod., 15, 607 (2007). https://doi.org/10.1016/j.jclepro.2006.03.002
  7. S.-B. Lee, S.-K. Jung, and J.-D. Lee, Appl. Chem. Eng., 21, 349 (2010).
  8. B. Q. He, J. X. Wang, J. M. Hao, X. G. Yang, and J. H. Xiao, Atmos. Environ., 37, 949 (2003). https://doi.org/10.1016/S1352-2310(02)00973-1
  9. C. E. Wyman, Bioresour. Technol., 50, 3 (1994). https://doi.org/10.1016/0960-8524(94)90214-3
  10. W.-S. Cho, Y.-H. Chung, B.-K. Kim, S.-J. Suh, W.-S. Koh, and S.-H. Choe, J. Plant Biotechnol., 34, 111 (2007). https://doi.org/10.5010/JPB.2007.34.2.111
  11. C. D. Scott, B. H. Davison, T. C. Scott, J. Woodward, C. Dees, and D. S. Rothrock, Appl. Biochem. Biotechnol., 45, 641 (1994). https://doi.org/10.1007/BF02941836
  12. J. K. Kwon, H. S. Moon, J. S. Kim, S. W. Kim, and S. I. Hong, Korean J. Biotech. Bioeng., 14, 24 (1999).
  13. S.-B. Lee and J.-D. Lee, J. of Korea Society of Waste Management, 27, 553 (2010).
  14. C. Somerville, S. Bauer, G. Brininstool, M. Facette, T. Hamann, J. Milne, E. Osbome, A. Paredez, T. Raab, S. Vorwerk, and H. Youngs, Science, 306, 2206 (2004). https://doi.org/10.1126/science.1102765
  15. J. Rose and A. B. Bennett, Trends Plant Sci., 4, 176 (1999). https://doi.org/10.1016/S1360-1385(99)01405-3
  16. B. C. Saha, J. Ind. Microbiol. Biotechnol., 30, 279 (2003). https://doi.org/10.1007/s10295-003-0049-x
  17. N. Mosier, C. Wyman, B. Dale, R. Elander, Y. Y. Lee, M. Holtzapple, and M. Ladisch, Bioresour. Technol., 96, 673 (2005). https://doi.org/10.1016/j.biortech.2004.06.025
  18. S. E. Jacobance and C. E. Wyman, Appl. Biochem. Biotechnol., 84-86, 81 (1999).
  19. S.-J. Park, Y.-H. Do, J.-S. Choi, Y.-H. Yoon, and I.-S. Cha, Trans. of the Korean Hydrogen and New Energy Society, 20, 142 (2009).