The Study of Evaluation Methods of Electrolyte for Li/SO2Cl2 Battery

Li/SO2Cl2 전지용 전해액의 평가 방법 연구

  • Roh, Kwang Chul (Korea Institute of Ceramic Engineering and Technology) ;
  • Cho, Min-Young (Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Jae-Won (Korea Institute of Ceramic Engineering and Technology) ;
  • Park, Sun-Min (Korea Institute of Ceramic Engineering and Technology) ;
  • Ko, Young-Ok (Vitzrocell R&D Center) ;
  • Lee, Jeong-Do (Vitzrocell R&D Center) ;
  • Chung, Kwang-il (Vitzrocell R&D Center) ;
  • Shin, Dong-Hyun (Vitzrocell R&D Center)
  • 노광철 (한국세라믹기술원 그린세라믹본부 에너지소재센터) ;
  • 조민영 (한국세라믹기술원 그린세라믹본부 에너지소재센터) ;
  • 이재원 (한국세라믹기술원 그린세라믹본부 에너지소재센터) ;
  • 박선민 (한국세라믹기술원 그린세라믹본부 에너지소재센터) ;
  • 고영옥 (비츠로셀 기술연구소) ;
  • 이정도 (비츠로셀 기술연구소) ;
  • 정광일 (비츠로셀 기술연구소) ;
  • 신동현 (비츠로셀 기술연구소)
  • Received : 2010.09.29
  • Accepted : 2010.12.09
  • Published : 2011.02.10

Abstract

The cathodic active material of $Li/SO_2Cl_2$ battery is $SO_2Cl_2$, which is the solvent of an electrolyte. It is referred to as a catholyte, a compound word of cathode and electrolyte. As the battery discharges, the catholyte burns out. And thus, the characteristics of the $SO_2Cl_2$ in the battery determine the capacity. In addition, the transition minimum voltage (TMV) and the voltage delay deviation of $Li/SO_2Cl_2$ battery are due to the passivation film formed by the reaction between an electrolyte and Li. Impurities in the electrolyte, such as moisture or heavy metal ions, will accelerate the growth of the passivation film. Therefore, a technology must be established to purify an electrolyte and to ensure the effectiveness of the purification method. In this research, $LiAlCl_4/SO_2Cl_2$ was manufactured using $AlCl_3$ and LiCl. Its concentration, the amount of moisture, and the metal amount were evaluated using an ionic conductivity meter, a colorimeter, and FT-IR.

Acknowledgement

Supported by : 지식경제부

References

  1. 松田好晴, 竹原善一郞, 電池便覽, 電池便覽緶潗委員會, 丸善株式會社 (平成2年).
  2. N. W. Fleischer and R. J. Ekern, J. Power Sources, 10, 179 (1983). https://doi.org/10.1016/0378-7753(83)87006-2
  3. J. W. Bayd, J. Electrochem. Soc., 134, 18 (1987). https://doi.org/10.1149/1.2100402
  4. A. N. Dey, Electrochim. Acta, 21, 377 (1976). https://doi.org/10.1016/0013-4686(76)85029-3
  5. W. K. Behl, abstr. 31, 156th Meeting Electrochem. Soc., Los Angeles (1979).
  6. S. Gilman, W. Wade, abstr. 33, 156th Meeting Electrochem. Soc., Los Angeles (1979).
  7. A. J. Nozik, Ann. Rev. Phys. Chem., 29, 189 (1978). https://doi.org/10.1146/annurev.pc.29.100178.001201
  8. M. S. Wrightor, A. B. Ellis, and S. W. Kaiser, Adv. Chem. Ser., 71, 163 (1977).
  9. M. Alamgir and K. M. Abraham, J. Appl. Electrochem., 24, 288 (1994).
  10. R. N. jones and C. Sandorfy, in "Technique of Organic Chemistry," A. Weissberger, Editor, Vol IX, chap, 4, Interscience Publishers, Inc., New York (1956).
  11. M. Rand, Anal. Chem., 35, 2126 (1963). https://doi.org/10.1021/ac60206a043
  12. Oxtoby, W. David, H. P. Gillis, Norman, and H. Nachtrieb, 4 Ed. Principles of Modern Chemistry (1998).
  13. E. Peled, J. Power Sources, 9, 253 (1983). https://doi.org/10.1016/0378-7753(83)87026-8
  14. R. Moshtev, Y. Geronov, and B. Puresheva, J. Electrochem. Soc., 128, 1851 (1981). https://doi.org/10.1149/1.2127750