Effect of Heat Treatment Temperatures on Photocatalytic Degradation of Methylene Blue by Mesoporous Titania

메틸렌블루 광촉매 분해반응에서 이산화티타늄 열처리 온도 영향

  • Lim, Samryong (Ulsan Science High School) ;
  • Nguyen-Phan, Thuy-Duong (School of Chemical Engineering and Bioengineering, University of Ulsan) ;
  • Shin, Eun Woo (School of Chemical Engineering and Bioengineering, University of Ulsan)
  • 임삼룡 (울산과학고등학교) ;
  • 웬 판 사이 유엉 (울산대학교 생명화학공학부) ;
  • 신은우 (울산대학교 생명화학공학부)
  • Received : 2010.09.27
  • Accepted : 2010.11.09
  • Published : 2011.02.10


In this study, we prepared $TiO_2$ with the sol-gel method and controlled physico-chemical properties by a simple heat treatment. All materials were applied to photocatalytic decomposition of methylene blue and the material treated at 473 K showed the highest photocatalytic efficiency. The high performance resulted from a high adsorption amount of methylene blue due to a high surface area of $229.8m^2/g$. However, the material treated at 873 K, despite of a low surface area of $23.8m^2/g$ and a large particle size of 28.38 nm, exhibits a good photocatalytic performance due to the effect of mixed cyrstalline rutile and anatase phases formed by the high heat treatment temperature.


Supported by : 한국연구재단


  1. X. Z. Li and M. Zhang, Water Sci. Tech., 34, 49 (1996).
  2. N. H. Ince, M. I. Stefan, and J. R. Bolton, J. Adv. Oxid. Technol., 2, 442 (1997).
  3. C. N. Kurucz, H. An, J. Greene, and T. D. Waite, J. Adv. Oxid. Technol., 3, 442 (1998).
  4. F. Zhang, J. Zhao, T. Shen, H. Hidaka, E. Pelizzetti, and N. Serpone, Appl. Catal. B: Environ., 15, 147 (1998). https://doi.org/10.1016/S0926-3373(97)00043-X
  5. L. Tinucci, E. Borgarello, C. Minero, and E. Pelizzetti, Photocatalytic Purification and Treatment of Water and Air, ed. H. Al-Ekabi, and David F. Ollis, 585, Elsevier Science Ltd., Amsterdam (1993).
  6. Y. S. Yang, W. Y. Jung, S. H. Baek, G. D. Lee, S. S. Park, and S. S. Hong, J. Korean Ind. Eng. Chem., 18, 148 (2007).
  7. D. Bahenemann, D. Bockelmann, and R. Goslich, Sol. Energ. Mater., 24, 564 (1991). https://doi.org/10.1016/0165-1633(91)90091-X
  8. J. M. Herrmann, C. Guillard, and P. Pichat, Catal. Today, 17, 7 (1993). https://doi.org/10.1016/0920-5861(93)80003-J
  9. D. F. Ollis, E. Pelizzetti, and N. Serpone, Environ. Sci. Technol., 25, 1523 (1991).
  10. X. Chen and S. Mao, Chem. Rev., 107, 2892 (2007).
  11. C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, Chem. Rev., 105, 1025 (2005). https://doi.org/10.1021/cr030063a
  12. L. T. Mancic, B. A. Marinkovic, P. M. Jardim, O. B. Milosevic, and F. Rizzo, Cryst. Growth Des., 9, 2152 (2009). https://doi.org/10.1021/cg800759n
  13. M. V. Rao, K. Rajeshwar, V. R. Vernerker, and J. Dubow, J. Phys. Chem., 84, 1987 (1980). https://doi.org/10.1021/j100452a023
  14. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem. Rev., 95, 69 (1995). https://doi.org/10.1021/cr00033a004
  15. S. Y. Chae, M. K. Park, S. K. Lee, T. Y. Kim, S. K. Kim, and W. I. Lee, Chem. Mater., 15, 3326 (2003). https://doi.org/10.1021/cm030171d
  16. T. Peng, D. Zhao, K. Dai, W. Shi, and K. Hirao, J. Phys. Chem. B., 109, 4947 (2005). https://doi.org/10.1021/jp044771r
  17. X. C. Wang, J. C. Yu, C. M. Ho, and A. C. Mak, Chem. Commum., 2262 (2005).
  18. G. S. Li, J. C. Yu, J. Zhu, and Y. Cao, Micro. Meso. Mater., 106, 278 (2007). https://doi.org/10.1016/j.micromeso.2007.03.018
  19. J Matos, J. Laine, and J.-M. Herrmann, Appl. Catal. B Environ., 18, 281 (1998). https://doi.org/10.1016/S0926-3373(98)00051-4
  20. A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, and J.-M. Herrmann, Appl. Catal. B: Environ., 31, 145 (2001). https://doi.org/10.1016/S0926-3373(00)00276-9
  21. T. A. Kandiel, R. Dillert, A. Feldhoff, and D. W. Bahnemann, J. Phys. Chem. C, 114, 4909 (2010). https://doi.org/10.1021/jp912008k