Synthesis and Characterization of Interfacial Properties of Sorbitan Laurate Surfactant

Sorbitan Laurate 계면활성제 합성 및 계면 특성에 관한 연구

  • Lee, Seul (Dept. of Chemical and Biochemical Engineering, Dongguk University-Seoul) ;
  • Kim, ByeongJo (AK ChemTech Central Research Lab.) ;
  • Lee, JongGi (AK ChemTech Central Research Lab.) ;
  • Lim, JongChoo (Dept. of Chemical and Biochemical Engineering, Dongguk University-Seoul)
  • 이슬 (동국대학교-서울 공과대학 화공생물공학과) ;
  • 김병조 (에이케이켐텍(주) 중앙연구소) ;
  • 이종기 (에이케이켐텍(주) 중앙연구소) ;
  • 임종주 (동국대학교-서울 공과대학 화공생물공학과)
  • Received : 2010.08.12
  • Accepted : 2010.09.01
  • Published : 2011.02.10

Abstract

The critical micelle concentration (CMC) of sorbitan laurate SP 20 surfactant in this paper was near $7.216{\times}10^{-4}mol/L$ and the surface tension at CMC was about 26.0 mN/m, which showed higher CMC and lower surface tension than those of octylphenol ethoxylate octylphenol ethoxylate (OPE) 10 surfactant. Dynamic surface tension measurement using a maximum bubble pressure tensiometer showed that the adsorption rate at the interface between air and surfactant solution was found to be slower with SP 20 surfactant, presumably due to a low mobility of SP 20 surfactant monomer. The contact angle of SP 20 surfactant solution was observed to decrease with an increase in surfactant concentration and showed a larger value than that of OPE 10 surfactant solution. Half-life time for foams generated with 1 wt% surfactant solution was also larger with SP 20 surfactant, which indicated higher foam stability with SP 20 surfactant. Dynamic behavior study reveals that the solubilization of n-decane oil was much lower with SP 20, which is in good agreement with experimental results of foam stability, contact angle and CMC. Dynamic interfacial tension measurement by a spinning drop tensiometer shows that interfacial tensions at equilibrium condition in both systems were almost the same but the time required to reach equilibrium was longer with SP 20.

Acknowledgement

Supported by : 동국대학교

References

  1. W. G. Cutler and E. Kissa, Detergency : Theory and Technology, Surfactant Science Series, 20, 1, Marcel Dekker, New York (1987).
  2. A. M. Schwartz, The Physical Chemistry of Detergency ed. E. Matijevic, Surface Colloid Sci., 195, Wiley, New York (1972).
  3. C. A. Miller and P. Neogi, Interfacial Phenomena : Equilibrium and Dynamic Effects, Surfactant Science Serie, 17, 150, Marcel Dekker, New York (1985).
  4. J. C. Lim, J. Korean Ind. Eng. Chem., 6, 610 (1995).
  5. J. C. Lim, J. Korean Ind. Eng. Chem., 8, 473 (1997).
  6. S. K. Lee, J. W. Han, B. H. Kim, P. G. Shin S. K. Park, and J. C. Lim, J. Korean Ind. Eng. Chem., 10, 537 (1999). https://doi.org/10.1007/s100510050883
  7. H. K. Ko, B. D. Park, and J. C. Lim, J. Korean Ind. Eng. Chem., 11, 679 (2000).
  8. J. G. Lee, S. S. Bae, I. S. Cho, S. J. Park, B. D. Park, S. K. Park, and J. C. Lim, J. Korean Ind. Eng. Chem., 16, 664 (2005).
  9. J. G. Lee, S. S. Bae, I. S. Cho, S. J. Park, B. D. Park, S. K. Park, and J. C. Lim, J. Korean Ind. Eng. Chem., 16, 677 (2005).
  10. J. C. Lim, J. Korean Ind. Eng. Chem., 16, 778 (2005).
  11. M. Franska, R. Franski, A. Szymanski, and Z. Lukaszewski, Water Res., 37, 1005 (2003). https://doi.org/10.1016/S0043-1354(02)00444-X
  12. P. F. X. Corvini, A. Schaffer, and D. Schlosser, App. Microbiol Biotechnol., 72, 223 (2006). https://doi.org/10.1007/s00253-006-0476-5
  13. C. A. Staples, C. G. Naylor, J. B. Williams, and W. E. Gledhill, Environ. Toxicol. Chem., 20, 2450 (2001). https://doi.org/10.1002/etc.5620201108
  14. A. Soares, B. Guieysse, B. Jefferson, E. Cartmell, and J. N. Lester, Environ. Int., 34, 1033 (2008). https://doi.org/10.1016/j.envint.2008.01.004
  15. M. S. Holt, E. H. McKerrell, J. Perry, and R. J. Watkinson, J. Chromatogr., 362, 419 (1986). https://doi.org/10.1016/S0021-9673(01)86995-8
  16. M. Antonio and G. Walter, Anal. Chem., 59, 1709 (1987). https://doi.org/10.1021/ac00140a027
  17. S. H. Im, H. S. Bak, S. H. Noh, S. K. Han, M. J. Rang, and Y. K. Yoon, J. Korean Ind. Eng. Chem., 14, 371 (2003).
  18. M. J. Rang, J. D. Kim, S. G. Oh, B. M. Lee, J. C. Lim, J. D. Hong, H. H. Kang, and J. G. Lee, The Recent Research Trends in Colloid and Surface Chemistry, 45, KOSFT, Seoul (2007).
  19. F. Mori, J. C. Lim, and C. A. Miller, Prog. Colloid Polym. Sci., 82, 114 (1990).
  20. J. C. Lim and C. A. Miller, Langmuir, 7, 2021 (1991). https://doi.org/10.1021/la00058a010
  21. J C. Lim, C. A. Miller, and C. H. Yang, Colloids Surf., 66, 45 (1992). https://doi.org/10.1016/0166-6622(92)80119-M
  22. M. J. Rang, J. C. Lim, C. A. Miller, C. Thunig, and H. H. Hoffmann, J. Colloid Interface Sci., 175, 440 (1995). https://doi.org/10.1006/jcis.1995.1474
  23. M. J. Bae and J. C. Lim, J. Korean Ind. Eng. Chem., 20, 15 (2009).
  24. M. J. Bae and J. C. Lim, Korean Chem. Eng. Res., 47, 24 (2009).
  25. M. J. Bae and J. C. Lim, Korean Chem. Eng. Res., 47, 46 (2009).
  26. M. J. Bae and J. C. Lim, J. Korean Ind. Eng. Chem., 20, 473 (2009).
  27. J. S. Kim, J. S. Park, and J. C. Lim, J. Korean Ind. Eng. Chem., 20, 479 (2009).
  28. B. J. Carroll, J. Colloid Interface Sci., 79, 126 (1981). https://doi.org/10.1016/0021-9797(81)90055-2
  29. A. S. Kabalnov and J. Weers, Langmuir, 12, 3442 (1996). https://doi.org/10.1021/la9600457
  30. S. R. Dungan, B. H. Tai, and N. I. Gerhardt, Colloids Surf. A., 216, 149 (2003). https://doi.org/10.1016/S0927-7757(02)00549-6