Effects of Operating Parameters on Tetrafluoromethane Destruction by a Waterjet Gliding Arc Plasma

워터젯 글라이딩 아크 플라즈마에 의한 사불화탄소 제거에 미치는 운전변수의 영향

  • Lee, Chae Hong (BK21 Team for Hydrogen Production.Department of Environmental Engineering, Chosun University) ;
  • Chun, Young Nam (BK21 Team for Hydrogen Production.Department of Environmental Engineering, Chosun University)
  • 이채홍 (조선대학교 환경공학부.BK21 바이오가스기반 수소생산 사업팀) ;
  • 전영남 (조선대학교 환경공학부.BK21 바이오가스기반 수소생산 사업팀)
  • Received : 2010.08.02
  • Accepted : 2010.11.01
  • Published : 2011.02.10

Abstract

Tetrafluoromethane ($CF_4$) has been used as the plasma etching and chemical vapor deposition (CVD) gas for semiconductor manufacturing processes. However, the gas need to be removed efficiently because of their strong absorption of infrared radiation and the long atmospheric lifetime which cause global warming effects. A waterjet gliding arc plasma system in which plasma is combined with the waterjet was developed to effectively produce OH radicals, resulting in efficient destruction of $CF_4$ gas. Design factors such as electrode shape, electrode angle, gas nozzle diameter, electrode gap, and electrode length were investigated. The highest $CF_4$ destruction of 93.4% was achieved at Arc 1 electrode shape, $20^{\circ}$ electrode angle, 3 mm gas nozzle diameter, 3 mm electrode gap and 120 mm electrode length.

Acknowledgement

Supported by : 한국연구재단

References

  1. H. Xie, B. Sun, and X. Zhu, J. Hazard. Mater., 168, 765 (2009). https://doi.org/10.1016/j.jhazmat.2009.02.081
  2. H. M. Lee, M. B. Chang, and R. F. Lu, Ind. Eng. Chem. Res., 44, 5526 (2005). https://doi.org/10.1021/ie0402923
  3. Narengerile, H. Saito, and T. Watanabe, Thin Solid Films., 518, 929 (2009). https://doi.org/10.1016/j.tsf.2009.07.164
  4. J. W. Sun and D. H. Park, Korean J. Chem. Eng., 20, 476 (2003). https://doi.org/10.1007/BF02705551
  5. C. H. Tsai and Z. Z. Kuo, J. Hazard. Mater., 161, 1478 (2009). https://doi.org/10.1016/j.jhazmat.2008.04.118
  6. D. Y. Kim and D. W. Park, Surf. Coat. Technol., 202, 5280 (2008). https://doi.org/10.1016/j.surfcoat.2008.06.023
  7. T. Kuroki, S Tanaka, M. Okubo, and T. Yamamoto, IEEE Trans Ind Appl., 43, 1075 (2007). https://doi.org/10.1109/TIA.2007.900468
  8. H. L. Chen, H. M. Lee, L. C. Cheng, M. B. Chang, S. J. Yu, and S. N. Li, IEEE Trans Plasma Sci., 36, 509 (2008). https://doi.org/10.1109/TPS.2008.918675
  9. N. Y. K. I. V. Kuznetsova, A. F. Gutsol, A. A. Fridman, and L. A. Kennedy, J. Appl. Phys., 92, 4231 (2002). https://doi.org/10.1063/1.1505682
  10. S. J. Yu and M. B. Chang, Plasma Chem. Plasma Process., 21, 311 (2001). https://doi.org/10.1023/A:1011066208188
  11. C. M. Du and J. H. Yan, IEEE Trans Plasma Sci., 35, 1648 (2007). https://doi.org/10.1109/TPS.2007.901941
  12. Y. C. Hong, H. S. Kim, and H. S. Uhm, Thin Solid Films, 435, 329 (2003). https://doi.org/10.1016/S0040-6090(03)00363-8
  13. D. R. Burgess, M. R. Zachariah, W. Tsang, and P. R. Westmoreland, Prog. Energy Combust. Sci., 21, 453 (1996).
  14. Z. Z. Su, K. Ito, K. Takashim, S. Katsura, K. Onda, and A. Mizuno, J. Phys. Appl. Phys., 35, 3192 (2002). https://doi.org/10.1088/0022-3727/35/24/307
  15. C. M. Du, J. H. Yan, and B. Cheron, Plasma Sources Sci. Technol., 16, 791 (2007). https://doi.org/10.1088/0963-0252/16/4/014
  16. H. Shiki, T. Okawa, S. Yamanaka, E. Usuki, Y. Nishimura, S. Hishida, and T. Sakakibara., Thin Solid Films., 516, 3684 (2008). https://doi.org/10.1016/j.tsf.2007.08.047
  17. S. Pellerin, F. Richard, J. Chapelle, J. M. Cormier, and K. Musiol., J. Phys. Appl. Phys., 33, 2407 (2000). https://doi.org/10.1088/0022-3727/33/19/311
  18. Z. Bo, J. H. Yan, X. D. Li, Y. Chi, B. Cheron, and K. F. Cen, Plasma Chem. Plasma Process., 27, 691 (2007). https://doi.org/10.1007/s11090-007-9102-2
  19. J. H. Yan, C. M. Du, X. D. Li, B. G. Cheron, M. J. Ni, and K. F. Cen, Plasma Chem. Plasma Process., 26, 31 (2006). https://doi.org/10.1007/s11090-005-8723-6
  20. C. S. Kalra, A. F. Gutsol, and A. A. Fridman, IEEE Trans Plasma Sci., 33, 32 (2005). https://doi.org/10.1109/TPS.2004.842321
  21. A. Fridman, S. Nester, L. A. Kennedy, A. Saveliev, and O. Mutaf-Yardimci, Prog. Energy Combust. Sci., 25, 211 (1999). https://doi.org/10.1016/S0360-1285(98)00021-5