Energy Conversion Efficiency of TiO2 Dye-sensitized Solar Cells with WO3 Additive

WO3가 첨가된 TiO2 염료감응형 태양전지의 에너지 전환 효율

  • Lee, Sung Kyu (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Lee, Young-Seak (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University)
  • 이성규 (충남대학교 정밀응용화학과) ;
  • 이영석 (충남대학교 정밀응용화학과)
  • Received : 2010.07.27
  • Accepted : 2010.09.27
  • Published : 2011.02.10

Abstract

In order to improve the energy conversion efficiency of dye-sensitized solar cell (DSSC), the photoelectrode was manufactured by using $TiO_2$ and $WO_3$ on combination effects of two conduction bands. The smash procedure of $TiO_2$ and $WO_3$ was carried out by using a paint shaker to enlarge the contact area of semiconductor with dye and electrolyte. The energy conversion efficiency of prepared DSSC was improved about two times from current-voltage curve based on effects of $WO_3$ and smash. The mechanism was suggested that the conduction band of $WO_3$ worked for prohibiting the trapping effects of electrons in conduction band of $TiO_2$. This result is attributed to the prevention of electron recombination between electron in conduction band of $TiO_2$ with dye and electrolyte. Impedance results indicate the improved electron transport at interface of $TiO_2$/dye/electrolyte.

References

  1. H. Chang, T. L. Chen, K. D. Huang, S. H. Chien, and K. C. Hung, J. Alloy. Compd., 504, 435 (2010). https://doi.org/10.1016/j.jallcom.2010.06.001
  2. M. Gratzel, C. R. Chim., 9, 578 (2006). https://doi.org/10.1016/j.crci.2005.06.037
  3. W. H. Lai, Y. H. Su, L. G. Teoh, and M. H. Hon, J. Photochem. Photobiol. A-Chem., 195, 307 (2008). https://doi.org/10.1016/j.jphotochem.2007.10.018
  4. J. K. Lee, B. H. Jeong, S. Jang, Y. G. Kim, Y. W. Jang, S. B. Lee, and M. R. Kim, J. Ind. Eng. Chem., 15, 724 (2009). https://doi.org/10.1016/j.jiec.2009.09.053
  5. S. U. Lee, W. S. Choi, and B. Hong, Sol. Energy Mater. Sol. Cells, 94, 680 (2010). https://doi.org/10.1016/j.solmat.2009.11.030
  6. F. L. Chen, A. Letortu, C. Y. Liao, C. K. Tsai, H. L. Huang, I. W. Sun, Y. L. Wei, and H. P. Wang, Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 619, 112 (2010). https://doi.org/10.1016/j.nima.2010.02.075
  7. Y. Lee, J. Chae, and M. Kang, J. Ind. Eng. Chem., 16, 609 (2010). https://doi.org/10.1016/j.jiec.2010.03.008
  8. S. Hao, J. Wu, L. Fan, Y. Huang, J. Lin, and Y. Wei, Sol. Energy, 76, 745 (2004). https://doi.org/10.1016/j.solener.2003.12.010
  9. S. H. Kang, M. S. Kang, S. H. Choi, J. Y. Kim, H. S. Kim, T. Hyeon, and Y. E. Sung, Electrochem. Commun., 10, 1326 (2008). https://doi.org/10.1016/j.elecom.2008.07.004
  10. V. Ganapathy, B. Karunagaran, and S. W. Rhee, J. Power Sources, 195, 5138 (2010). https://doi.org/10.1016/j.jpowsour.2010.01.085
  11. K. Fan, T. Peng, B. Chai, J. Chen, and K. Dai, Electrochim. Acta, 55, 5239 (2010). https://doi.org/10.1016/j.electacta.2010.04.051
  12. J. H. Lee, N. G. Park, and Y. J. Shin, Sol. Energy Mater. Sol. Cells, 95, 179 (2011). https://doi.org/10.1016/j.solmat.2010.04.027
  13. S. Sakthivel, M. V. Shankar, M. Palanichamy, B. Arabindoo, D. W. Bahnemann, and V. Murugesan, Water Res., 38, 3001 (2004). https://doi.org/10.1016/j.watres.2004.04.046
  14. H. Xu, X. Tao, D. T. Wang, Y. Z. Zheng, and J. F. Chen, Electrochim. Acta, 55, 2280 (2010). https://doi.org/10.1016/j.electacta.2009.11.067
  15. M. K. Parvez, G. M. Yoo, J. H. Kim, M. J. Ko, and S. R. Kim, Chem. Phys. Lett., 495, 69 (2010). https://doi.org/10.1016/j.cplett.2010.06.038
  16. S. M. Waita, B. O. Aduda, J. M. Mwabora, C. G. Granqvist, S. E. Lindquist, G. A. Niklasson, A. Hagfeldt, and G. Boschloo, J. Electroanal. Chem., 605, 151 (2007). https://doi.org/10.1016/j.jelechem.2007.04.001
  17. L. Meng, T. Ren, and C. Li, Appl. Surf. Sci., 256, 3676 (2010). https://doi.org/10.1016/j.apsusc.2009.12.169
  18. J. Wu, G. Xie, J. Lin, Z. Lan, M. Huang, and Y. Huang, J. Power Sources, 195, 6937 (2010). https://doi.org/10.1016/j.jpowsour.2010.04.081
  19. Z. Tang, J. Wu, Q. Li, Z. Lan, L. Fan, J. Lin, and M. Huang, Electrochim. Acta, 55, 4883 (2010). https://doi.org/10.1016/j.electacta.2010.03.081
  20. Y. Lee and M. Kang, Mater. Chem. Phys., 122, 284 (2010). https://doi.org/10.1016/j.matchemphys.2010.02.050
  21. L. Dupuy, S. Haller, J. Rousset, F. Donsanti, J. F. Guillemoles, D. Lincot, and F. Decker, Electrochem. Commun., 12, 697 (2010). https://doi.org/10.1016/j.elecom.2010.03.009
  22. L. Lu, R. Li, K. Fan, and T. Peng, Sol. Energy, 84, 844 (2010). https://doi.org/10.1016/j.solener.2010.02.010
  23. P. Balraju, P. Suresh, M. Kumar, M. S. Roy, and G. D. Sharma, J. Photochem. Photobiol. A-Chem., 206, 53 (2009). https://doi.org/10.1016/j.jphotochem.2009.05.014
  24. K. Pan, Y. Dong, C. Tian, W. Zhou, G. Tian, B. Zhao, and H. Fu, Electrochim. Acta, 54, 7350 (2009). https://doi.org/10.1016/j.electacta.2009.07.065
  25. J. A. Mikroyannidis, M. M. Stylianakis, M. S. Roy, P. Suresh, and G. D. Sharma, J. Power Sources, 194, 1171 (2009). https://doi.org/10.1016/j.jpowsour.2009.06.002
  26. L. Bay, K. West, B. W. Jensen, and T. Jacobsen, Sol. Energy Mater. Sol. Cells, 90, 341 (2006). https://doi.org/10.1016/j.solmat.2005.04.040
  27. L. Y. Lin, C. P. Lee, R. Vittal, and K. C. Ho, J. Power Sources, 195, 4344 (2010). https://doi.org/10.1016/j.jpowsour.2010.01.031