Methylene Blue Photodegradation Properties of Anatase/brookite Hybrid TiO2 Photocatalyst Prepared with Different Acid Catalysts

산 촉매에 따른 아나타제/브루카이트 혼성형 TiO2 광촉매의 메틸렌블루 광분해특성

  • Yun, Seok-Min (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University) ;
  • Kim, Jinhoon (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University) ;
  • Jeong, Euigyung (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University) ;
  • Im, Ji Sun (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University) ;
  • Lee, Young-Seak (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University)
  • 윤석민 (충남대학교 공과대학 정밀응용화학과) ;
  • 김진훈 (충남대학교 공과대학 정밀응용화학과) ;
  • 정의경 (충남대학교 공과대학 정밀응용화학과) ;
  • 임지선 (충남대학교 공과대학 정밀응용화학과) ;
  • 이영석 (충남대학교 공과대학 정밀응용화학과)
  • Received : 2010.07.10
  • Accepted : 2010.08.27
  • Published : 2011.02.10

Abstract

In this study, anatase/brookite hybrid $TiO_2$ was prepared using different acid catalysts and microwave to improve photodegradation of organic pollutants. The methylene blue photodegradation properties of the prepared photocatalysts with different particle/crystal size and brookite fractions were investigated. Surface characteristics and particle sizes of anatase/brookite hybrid $TiO_2$ were evaluated using scanning electron microscopy (SEM) and laser diffraction particle size analyzer, respectively and crystal structures were investigated with X-ray diffraction (XRD). Methylene blue photodegradation properties were evaluated with UV-vis spectrophotometer. Anatase and anatase/brookite hybrid $TiO_2$ had less than 500 nm size of clusters and the average particle size of $6.66{\sim}6.85{\mu}m$, suggesting that types of acid catalysts did not affect the size. XRD of the prepared $TiO_2$ showed that the photocatalysts had anatase/brookite hybrid crystal structure and applying microwave did not change their crystal structure. Photodegradation of methylene blue with the prepared photocatalyst did not increased proportionally to the fraction of brookite and the crystal size and decreased when brookite fraction and the crystal size increased further. Anatase/brookite hybrid $TiO_2$ with brookite fraction of 9.4% and crystal size of 4.53 nm shows the best photodegradation activity of methylene blue.

References

  1. K. Aghish and D. C. Panagiotis, Aerosol Sci. Technol., 32, 369 (2000). https://doi.org/10.1080/027868200303687
  2. K. H. Choi, B. J. Ahn, W. G. Chang, H. S. Shin, and O. B. Yang, J. Korean Ind. Eng. Chem., 14, 937 (2003).
  3. K. Hashimoto, H. Irie, and A. Fujishima, J. Appl. Phys., 44, 8269 (2005). https://doi.org/10.1143/JJAP.44.8269
  4. S. Tanemura, L. Miao, W. Wunderlich, M. Tanemura, Y. Mori, S. Toh, and K. Kaneko, Sci. Tech. Adv. Mater., 6, 11 (2005). https://doi.org/10.1016/j.stam.2004.06.002
  5. D. H. Hyun, T. H. Lim, and S. W. Lee, J. Korean Ind. Eng. Chem., 19, 554 (2008).
  6. B. C. Bai, J. S. Im, J. G. Kim, and Y. S. Lee, Appl. Chem. Eng., 21, 29 (2010).
  7. T. Mishra, J. Hait, N. Aman, M. Gunjan, B. Mahato, and R. K. Jana, J. Colloid Interface Sci., 327, 377 (2008). https://doi.org/10.1016/j.jcis.2008.08.040
  8. S. M. Yun, K. Palanivelu, Y. H. Kim, P. H. Kang, and Y. S. Lee, J. Ind. Eng. Chem., 14, 667 (2008). https://doi.org/10.1016/j.jiec.2008.02.010
  9. S. H. Song and M. Kang, J. Ind. Eng. Chem., 14, 785 (2008). https://doi.org/10.1016/j.jiec.2008.05.002
  10. Q. Cgen, Y. Qian, Z. Chen, G. Zhou, and Y. Zhang, Mat. Lett., 22, 77 (1995). https://doi.org/10.1016/0167-577X(94)00227-4
  11. W. Y. Jung, Y. H. Han, G. D. Lee, S. S. Park, and S. S. Hong, J. Korean Ind. Eng. Chem., 19, 351 (2008)
  12. D. W. Johnson, J. Am. Ceram. Soc. Bull., 64, 1597 (1985).
  13. X. Z. Ding, Z. Z. Qi, and Y. Z. He, J. Mat. Sci. Lett., 14, 21 (1995). https://doi.org/10.1007/BF02565273
  14. H. D. Nam, B. H. Lee, S. J. Kim, C. H. Jung, J. H. Lee, and S. Park, J. Appl. Phys., 37, 4603 (1998). https://doi.org/10.1143/JJAP.37.4603
  15. S. K. Ellis and E. P. M. Namara, J. Am. Ceram. Soc. Bull., 68, 988 (1989).
  16. B. Jiang, H. Yin, T. Jiang, J. Yan, Z. Fan, C. Li, J. Wu, and Y. Wada, Mater. Chem. Phys., 92, 595 (2005). https://doi.org/10.1016/j.matchemphys.2005.02.007
  17. F. Armani, M. Gougis, S. A. Impey, A. C. James, K. Lawson, L. Lihrmann, M. Stock, and S. Dunn, Mater. Lett., 64, 140 (2010). https://doi.org/10.1016/j.matlet.2009.10.022
  18. S. W. Sarah, B. Donia, A. S. Jason, and A. Rose, Chem. Eng., 95, 213 (2003). https://doi.org/10.1016/S1385-8947(03)00107-4
  19. C. B. Almquist and P. Biswas, J. Catal., 212, 145 (2002). https://doi.org/10.1006/jcat.2002.3783
  20. K. Wilasinee, P. Piyasan, P. Joongjai, S. Akawat, S. Piyawat, and S. Chairit, J. Cryst. Growth, 297, 234 (2006). https://doi.org/10.1016/j.jcrysgro.2006.09.018
  21. B. M. Lee, D. Y. Shin, and S. M. Han, J. Kor. Ceram. Soc., 37, 308 (2000).
  22. L. Mao, Q. Li, H. Dang, and Z. Zhang, Mat. Res. Bull., 40, 201 (2005). https://doi.org/10.1016/j.materresbull.2004.11.001
  23. K. N. P. Kumar, D. J. Fray, J. Nair, F. Mizukami, and T. Okubo, Scripta Mater., 57, 771 (2007). https://doi.org/10.1016/j.scriptamat.2007.06.039
  24. A. Porrier, C. Chaneac, E. Tronc, L. Mazerolles, and J. P. Jolivet, J. Mater. Chem., 11, 1116 (2001). https://doi.org/10.1039/b100435m
  25. B. I. Lee, A. Wang, R. C. Bhave, and M. Hu, Mater. Lett., 60, 1179 (2006) https://doi.org/10.1016/j.matlet.2005.10.114
  26. K. N. P. Kumar, D. J. Fray, J. Nair, F. Mizukami, and T. Okubo, Scripta Mater., 57, 771 (2007). https://doi.org/10.1016/j.scriptamat.2007.06.039
  27. J. Yu, J. C. Yu, M. K. P. Leung, W. Ho, B. Cheng, X. Zhao, and J. Zhao, J. Catal., 217, 69 (2003).