Electrochemical Characterization of Animal Tissue-Immobilized Carbon Paste Biosensor Bound with Chloroprene Rubber

클로로프렌 고무로 결합된 동물조직 고정 탄소반죽 전극의 전기화학적 특성

  • Rhyu, Keun-Bae (Department of Applied Chemistry, Cheongju University)
  • 유근배 (청주대학교 자연과학부 응용화학과)
  • Received : 2010.11.15
  • Accepted : 2010.11.19
  • Published : 2011.02.10

Abstract

Even though the carbon paste electrode bound with mineral oil is useful for research about the characteristics of enzymes, it remains far from practical uses because the lack of mechanical hardness limits its practical use. When the rubber liquefied in toluene was used as a binder of carbon powder in lab, it is confirmed that the mechanical robustness of the electrode is guaranteed. In order to confirm whether it shows quantitative electrochemical behaviors or not, its kinetic parameters, e.g. the symmetry factor (${\alpha}=0.28$), the exchange current density ($i_0=4.06{\mu}A/cm^2$), the capacity of the double layer ($C_d=2.11{\times}10^{-3}F$), the Michaelis constant ($K_M=2.45{\times}10^{-3}M$), and the time constant (${\tau}_B=0.077sec$) were investigated. Our experimental observations prove that the chloroprene rubber is a promising binder for the practical use of a carbon paste electrode.

Acknowledgement

Supported by : 청주대학교

References

  1. T. J. Cheng, T. M. Lin, and H. C. Chang, Anal. Chim. Acta, 462, 261 (2002). https://doi.org/10.1016/S0003-2670(02)00335-5
  2. J. J. Roy, T. E. Abraham, K. S. Abhijith, P. V. S. Kumar, and M. S. Thakur, Biosens. Bioelectron., 21, 206 (2005). https://doi.org/10.1016/j.bios.2004.08.024
  3. Y. F. Yang, and S. L. Mu, Biosens. & Bioelectron., 21, 74 (2005). https://doi.org/10.1016/j.bios.2004.08.049
  4. Y. C. Li, W. F. Bu, L. X. Wu, and C. Q. Sun, Sens. Acturators B, 107, 921 (2005). https://doi.org/10.1016/j.snb.2004.12.040
  5. X. Chen, J. Z. Zhang, B. Q. Wang. G. J. Cheng, and S. J. Dong, Anal. Chim. Acta, 434, 255 (2001). https://doi.org/10.1016/S0003-2670(01)00830-3
  6. A. S. Miquel, M. Arben, and A. Salvador, Sens. Acturators B, 69, 153 (2000). https://doi.org/10.1016/S0925-4005(00)00536-0
  7. S. Tingry, C. Innocent, S. Touil, A. Deratani, and P. Seta, Mater. Sci. Eng. C, 26, 222 (2006). https://doi.org/10.1016/j.msec.2005.10.071
  8. J. Wang, J. W. Mo, S. F. Li, and J. Porter, Anal. Chim. Acta, 441, 813 (2001).
  9. K. J. Yoon, K. J. Kim, and H. S. Kwon, J. Kor. Chem. Soc., 43, 271 (1999).
  10. K. J. Yoon, Anal. Sci. Tech., 16, 504 (2003).
  11. K. J. Yoon, J. Kor. Chem. Soc., 48, 654 (2004). https://doi.org/10.5012/jkcs.2004.48.6.654
  12. K. J. Yoon, Bull. Kor. Chem. Soc., 25, 997 (2004). https://doi.org/10.5012/bkcs.2004.25.7.997
  13. K. J. Yoon, Bull. Kor. Chem. Soc., 29, 2264 (2008). https://doi.org/10.5012/bkcs.2008.29.11.2264
  14. B. G. Lee, K. B. Rhyu, and K. J. Yoon, Bull. Kor. Chem. Soc., 30, 2457 (2009). https://doi.org/10.5012/bkcs.2009.30.10.2457
  15. B. G. Lee, K. B. Rhyu, and K. J. Yoon, J. Ind. Eng. Chem., 16, 340 (2010). https://doi.org/10.1016/j.jiec.2010.01.016
  16. Brydson, Rubbery Materials and Their Compounds, Elsvier Applied Science, London and New York, 206 (1988).
  17. P. C. Pandey, S. Upadhyay, and B. Upadhyay, Anal. Biochem., 252, 136 (1997). https://doi.org/10.1006/abio.1997.2291
  18. Q. Yao, S. C. Yabuki, and F. M. Mizutani, Sens. Acturators B, 65, 147 (2000). https://doi.org/10.1016/S0925-4005(99)00434-7
  19. A. Mansouri, D. P. Makris, and P. Kefalas, J. Pham. Bio. Anal., 39, 22 (2005). https://doi.org/10.1016/j.jpba.2005.03.044