Effect of Amino Modified Siloxanes with Two Different Molecular Weights on the Properties of Epoxy Composites for Adhesives for Micro Electronics

전자소재 접착제용 에폭시에 두 종의 다른 당량수를 갖는 아미노 변성 실록산이 미치는 영향

  • Yu, Kihwan (Department of Chemical Engineering, Kwangwoon University) ;
  • Kim, Daeheum (Department of Chemical Engineering, Kwangwoon University)
  • 유기환 (광운대학교 화학공학과) ;
  • 김대흠 (광운대학교 화학공학과)
  • Received : 2010.11.11
  • Accepted : 2010.12.17
  • Published : 2011.02.10


In the non-conductive adhesives (NCAs) for adhesion of micro electro mechanical system (MEMS), there are some problems such as delamination and cracking resulting from the large differences of coefficients of thermal expansion (CTE) between NCAs and substrates. So, the addition of inorganic particles such as silica and nano clay to the CTEs composit have been applied to reduce the CTEs of the adhesives. Additions of the flexibilizers such as siloxanes have also been performed to improve the flexibility of epoxy composite. Amino modified siloxane (AMSs) were used to improve compatibility between epoxy and siloxane. In this study, glass transition temperatures (Tg) and moduli of those composites were measured to confirm the effects of AMS with two different equivalents on thermal/mechanical properties of AMS/epoxy composites. Tg of KF-8010/epoxy composites decreased from 148 to $122^{\circ}C$ and those of X-22-161A/epoxy composites decreased from 148 to $121^{\circ}C$. Moduli of KF-8010/epoxy composites decreased from 2648 to 2143 MPa by adding KF-8010 and moduli of X-22-161A/epoxy composites decreased from 2648 to 2014 MPa. In short, using long Si-O chain AMS leads to a greater decrease in moduli. However, haven't showed significant differences in Tg's.



Supported by : 서울시, 광운대학교


  1. J. M. Kim, Journal of KWJS, 25, 133 (2007).
  2. D. H. Lee and D. H. Kim, Kor. Chem. Eng. Res., 47, 332 (2009).
  3. D. H. Lee, K. H. Yu, and D. H. Kim, Kor. Chem. Eng. Res., 47, 203 (2009).
  4. Y. Li and C. P. Wong, Mater. Sci. Eng., R, 51, 1 (2006). https://doi.org/10.1016/j.mser.2006.01.001
  5. L. Matejka, O. Dukh, and J. Kolarik, Polymer, 41, 1449 (2000). https://doi.org/10.1016/S0032-3861(99)00317-1
  6. K. H. Haas and H. Wolter, Curr. Opin. Solid St. M., 4, 571 (1999). https://doi.org/10.1016/S1359-0286(00)00009-7
  7. N. Salahuddin, A. Moet, A. Hiltner, and E. Baer, Eur. Polym. J., 38, 1477 (2002). https://doi.org/10.1016/S0014-3057(02)00015-0
  8. L. Matejka, K. Dusek, J. Kriz, and F. Lednicky, Polymer, 40, 171 (1998).
  9. M. W. Wang, H. Wu, and M. S. Lin, J. Polym. Res., 15, 1 (2008). https://doi.org/10.1007/s10965-007-9137-3
  10. H. J. Gong and W. Kim, Elastomer, 43, 39 (2008).
  11. J. M. Yeh, H. Y. Huang, C. L. Chen, W. F. Su, and Y. H. Yu, Surf. Coat. Technol., 200, 2753 (2006). https://doi.org/10.1016/j.surfcoat.2004.11.008
  12. Y. Morita, S. Tajima, H. Suzuki, and H. Sugino, J. Appl. Polym. Sci., 100, 2010 (2006). https://doi.org/10.1002/app.22603
  13. S. Marimuthu, S. L. Madurai, and S. R. R. Boreddy, Macromol. Chem. Phys., 206, 2501 (2005). https://doi.org/10.1002/macp.200500143
  14. S. J. Park, F. L. Jin, J. H. Park, and K. S. Kim, Mater. Sci. Eng., A, 399, 377 (2005). https://doi.org/10.1016/j.msea.2005.04.020
  15. S. Ahmad, A. P. Gupta, E. Sharmin, M. Alam, and S. K. Pandey, Prog. Org. Coat., 54, 248 (2005). https://doi.org/10.1016/j.porgcoat.2005.06.013
  16. H. T. Li, M. S. Lin, H. R. Chuang, and M. W. Wang, J. Polym. Res., 12, 385 (2005). https://doi.org/10.1007/s10965-005-1766-9
  17. H. Lee, P. D. Fasulo, W. R. Rodgers, and D. R. Paul, Polymer, 47, 3528 (2006). https://doi.org/10.1016/j.polymer.2006.03.016