Advanced Characterization Techniques of Organic Matter in Aqueous Solutions

물 속 유기물의 고도 특성 분석

  • Shon, Ho Kyong (School of Civil and Environmental Engineering, University of Technology, Sydney (UTS)) ;
  • Vigneswaran, Saravanamuthu (School of Civil and Environmental Engineering, University of Technology, Sydney (UTS)) ;
  • Kandasamy, Jaya (School of Civil and Environmental Engineering, University of Technology, Sydney (UTS)) ;
  • Kim, Jong Beom (School of Applied Chemical Engineering & The Research Institute for Catalysis, Chonnam National University) ;
  • Kim, Jong-Ho (School of Applied Chemical Engineering & The Research Institute for Catalysis, Chonnam National University)
  • 손호경 (시드니공과대학교 도시환경공학과) ;
  • ;
  • ;
  • 김종범 (전남대학교 응용화학공학부 촉매연구소) ;
  • 김종호 (전남대학교 응용화학공학부 촉매연구소)
  • Received : 2011.01.26
  • Published : 2011.02.10

Abstract

Water is the most precious resource to human being, but it is polluted by different organic compounds. Organic matter (OM) in aqeous solutions is one of the important parameters of concern for human and environmental impact, and thus, it is essential to better characterize specifically targeted organic matter in aggregated and individual level of concentrations. This review presents different analytical tools and protocols to investigate detailed properties and characterization. Physical, chemical and biological aspects of OM are envisaged in terms of traditional and advanced measurement methods.

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. G. Tchobanoglous and F. L. Burton, Wastewater engineering: treatment, disposal, and reuse. 3rd Eds., MaGraw-Hill, Inc. New York (1991).
  2. N. G. Her, Ph. D. Dissertation University of Colorado, USA (2002).
  3. J. A. Leenheer, J. P. Croue, M. Benjamin, G. V. Korshin, C. J. Hwang, A. Bruchet, and G. R. Aiken, Comprehensive isolation of natural organic matter from water for spectral characterizations and reactivity testing. In: S. E. Barrett, S. W. Krasner, and G. L. Amy (Eds.), ACS symposium series, 761 (2000).
  4. G. Aiken, D. McKnight, K. Thorn, and E. Thurman, Org. Geochem., 18, 567 (1992). https://doi.org/10.1016/0146-6380(92)90119-I
  5. J. Cho Ph. D. Dissertation University of Colorado, USA (1998).
  6. C. E. W. Steinberg, Ecology of humic substances in freshwaters. Springer (2003).
  7. J. Peuravuori and K. Pihlaja, Structural characterization of humic substances. In: J. Keskitalo, and P. Eloranta, (eds) Limnology of humic waters. Backhuys, Leiden (1999).
  8. J. Peuravuori, T. Lehtonen, and K. Pihlaja, Anal. Chim. Acta, 471, 219 (2002). https://doi.org/10.1016/S0003-2670(02)00931-5
  9. L. M. L. Nollet, Handbook of water analysis. Marcel Dekker, Inc., New York USA (2000).
  10. A. Imai, T. Fukushima, K. Matsushige, Y. H. Kim, and K. Choi, Water Res., 36, 859 (2002). https://doi.org/10.1016/S0043-1354(01)00283-4
  11. H. K. Shon, S. Vigneswaran, I. S. Kim, J. Cho, and H. H. Ngo, Water Res., 38, 1933 (2004). https://doi.org/10.1016/j.watres.2004.01.015
  12. C. Jarusutthirak, G. Amy, and J. P. Croue, Desalination, 145, 247 (2002). https://doi.org/10.1016/S0011-9164(02)00419-8
  13. J. K. Edzwald, C. William, and K. L. Wattier, J. Am. Water Works Assn., 77, 122 (1985). https://doi.org/10.1002/j.1551-8833.1985.tb05521.x
  14. D. M. Owen, G. Amy, and Z. K. Chowdhury, AWWARF and AWWA conference proceedings, Denver, CO (1993).
  15. J. Cho, G. Amy, and J. Pellegrino, Desalination, 127, 283 (2000). https://doi.org/10.1016/S0011-9164(00)00017-5
  16. S. Lee, Y. G. Cho, Y. Song, I. S. Kim, and J. Cho, J. Water Supply Res Technol.-Aqua, 52, 129 (2003).
  17. A. Weis, M. R. Bird, and M. Nystrom, J. Membr. Sci., 216, 67, (2003). https://doi.org/10.1016/S0376-7388(03)00047-4
  18. C. Jarusutthirak, Ph. D. Dissertation, University of Colorado at Boulder, USA (2002).
  19. D. A. Skoog, F. J. Holler, and T. A. Nieman, Principles of instrumental analysis, 5th ed., Harcourt Brace College Publishers, PA, USA (1998).
  20. A. D. Levine, G. Tchobanoglous, and T. Asano, Journal WPCF, 57, 805 (1985).
  21. Y. Chin, G. Aiken, and E. O'Loughlin, Environ. Sci. Technol., 28, 1853 (1994). https://doi.org/10.1021/es00060a015
  22. N. Her, G. Amy, D. Foss, and J. Cho, Environ. Sci. Technol., 36, 3393 (2002). https://doi.org/10.1021/es015649y
  23. J. E. Drewes, M. Reinhard, and P. Fox, Water Res., 37, 3612 (2003). https://doi.org/10.1016/S0043-1354(03)00230-6
  24. R. L. Malcolm, Geochemistry of stream fulvic and humic substances. John Wiley and Sons (1985).
  25. J. Drewes and P. Fox. Water Sci. Technol., 40, 241 (1999).
  26. R. G. Wetzel and W. B. Limnology, Saunders Company, Philadelphia, USA (1975).
  27. I. S. Chronakis, J. Agric. Food Chem., 49, 888898 (2001).
  28. P. M. Huck, J. Am. Water Works Assn., 82, 78 (1990).
  29. P. Servais, G. Billen, and M. C. Hascoet, Water Res., 21, 445 (1987). https://doi.org/10.1016/0043-1354(87)90192-8
  30. C. Volk, C. Renner, C. Robert, and J. C. Joret, Environ. Technol., 15, 545 (1994). https://doi.org/10.1080/09593339409385460
  31. B. Kwon, S. Lee, J. Cho, H. Ahn, D. Lee, and H. S. Shin, Environ. Sci. Technol., 39, 732 (2005). https://doi.org/10.1021/es049919z
  32. I. C. Escobar and A. A. Randall, Water Res., 35, 4444 (2001). https://doi.org/10.1016/S0043-1354(01)00173-7
  33. I. Escobar and A. Randall, J. Am. Water Works Assn., 91, 76 (1999). https://doi.org/10.1002/j.1551-8833.1999.tb08650.x
  34. M. Tonkes, H. Pols, H. Warmer, and V. Bakker, Whole-effluent assessment. RIZA Report 98.034. Institute for Inland Water Management and Waste Water Treatment, Lelystad, The Netherlands (1998).
  35. S. Aguayo, M. J. Munoz, A. Torre, J. de la, Roset, and M. Carballo, Sci. Total Environ., 38, 69 (2004).
  36. M. Nasu, M. Goto, H. Kato, Y. Oshima, and H. Tanaka, Water Sci. Technol., 43, 101 (2001).
  37. A. J. Murk, J. Legler, M. M. H. Van Lipzig, J. H. N. Meerman, A. C. Belfroid, A. Spenkelink, B. Van der Burg, G. B. J. Rijs, and D. Vethaak, Environ. Toxicol. Chem., 21, 16 (2002). https://doi.org/10.1002/etc.5620210103
  38. T. Shiozawa, A. Tada, H. Nukaya, T. Watanabe, Y. Takahashi, M. Asanoma, T. Ohe, H. Sawanishi, T. Katsuhara, T. Sugimura, K. Wakabayashi, and Y. Terao, Chem. Res. Toxicol., 13, 535 (2000). https://doi.org/10.1021/tx0000264
  39. A. Tiehm and U. Neis, Ultrasonics Sonochem., 12, 121 (2005). https://doi.org/10.1016/j.ultsonch.2004.05.013
  40. Standard methods for the examination of water and waste water (18), American Public Health Association (APHA), Washington, DC, USA (1995).
  41. S. F. Aquino and D. C. Stuckey, Water Res., 38, 255 (2004). https://doi.org/10.1016/j.watres.2003.09.031
  42. X. Zhang, P. Bishop, and B. Kinkle, Wat Sci Technol., 39, 211 (1999).
  43. B. E. Rittmann and P. L. McCarty, Environmental biotechnology: principles and applications, McGraw-Hill International Editions, London, UK (2001).
  44. S. A. Cohen and D. P. Michaud, Ana. Biochem., 211, 279 (1993). https://doi.org/10.1006/abio.1993.1270
  45. A. Fox, S. L. Morgan, and J. Gilbart, Preparation of alditol acetates and their analysis by gas chromatography GC and mass spectrometry. In: C. J. Bierman and G. D. MacGinnis, Editors, 1989. Analysis of Carbohydrates by GLC and MS, CRC Press, USA (1989).
  46. R. G. Wetzel, P. G. Hatcher, and T. S. Bianchi, Limnol. Oceanogr., 40, 1369 (1995). https://doi.org/10.4319/lo.1995.40.8.1369
  47. T. Brinkman, C. Zwiener, and F. H. Frimmel, Vom Wasser, 94, 41 (2000).
  48. T. A. Ternes, TrAC-Trend Anal. Chem., 20, 419 (2001). https://doi.org/10.1016/S0165-9936(01)00078-4
  49. S. Snyder, B. Vanderford, R. Pearson, and Y. Yoon, Pract Per Haz Toxic Rad Waste Mgmt., 7, 224 (2003). https://doi.org/10.1061/(ASCE)1090-025X(2003)7:4(224)
  50. L. H. Nowell, P. D. Capel, and P. D. Dileanis, Pesticides in Stream Sediment and Aquatic Biota-Distribution, Trends and Governing Factors. CRC Press, Boca Raton, FL, USA (1999).
  51. M., Petrovic, S. Gonzalez, and D. Barcelo, TrAC-Trend Anal. Chem., 22, 685 (2003). https://doi.org/10.1016/S0165-9936(03)01105-1