A Study for Kinetics and Oxidation Reaction of Substituted Benzyl Alcohols Using 2,4'-Bipyridinium Dichromate

2,4'-Bipyridinium Dichromate를 이용한 치환 벤질 알코올류의 산화반응과 반응속도에 관한 연구

  • Kim, Young Sik (Department of Chemical Engineering, Kangwon National University) ;
  • Park, Young Cho (Department of Chemical Engineering, Kangwon National University)
  • 김영식 (강원대학교 화학공학과) ;
  • 박영조 (강원대학교 화학공학과)
  • Received : 2011.06.14
  • Accepted : 2011.08.24
  • Published : 2011.12.10

Abstract

2,4'-Bipyridinium dichromate [$(C_{10}H_8N_2H)_2Cr_2O_7$] was synthesized by the reaction of 2,4'-bipyridinie with chromium trioxide in $H_2O$. The structure was characterized by IR and ICP analysis. The oxidation of benzyl alcohol using 2,4'-bipyridinium dichromate in various solvents showed that the reactivity increased with the increase in the order of the dielectric constant (${\varepsilon}$), in the order : cyclohexene < chloroform < acetone < N,N'-dimethylformamide. In the presence of hydrochloric acid, 2,4'-bipyridinium dichromate effectively oxidized benzyl alcohol and its derivatives ($p-CH_3$, H, m-Br, $m-NO_2$) in N,N'-dimethylformamide. Electron-donating substituents accelerated the reaction, whereas electron acceptor groups retarded the reaction. The Hammett reaction constant (${\rho}$) was -0.65 at 303 K. The observed experimental data was used to rationalize the hydride ion transfer in the rate-determining step.

Keywords

substituted benzyl alcohol;Hammett reaction constant (${\rho}$);hydride ion transfer;rate-determining step

References

  1. K. K. Banerji, Indian J. Chem., 17A, 300 (1979).
  2. K. K. Banerji, Bull. Chem. Soc. Japan, 61, 1767 (1988). https://doi.org/10.1246/bcsj.61.1767
  3. J. F. Kuo, Bull. Chem. Soc. Japan, 64, 3059 (1991). https://doi.org/10.1246/bcsj.64.3059
  4. M. K. Mahanti and D. Dey, J. Org. Chem., 55, 5848 (1990). https://doi.org/10.1021/jo00310a015
  5. M. K. Mahanti and I. Nongkynrih, J. Org. Chem., 58, 4925 (1993). https://doi.org/10.1021/jo00070a031
  6. M. K. Mahanti and I. Nongkynrih, Bull. Chem. Soc. Jpn., 67, 2320 (1994). https://doi.org/10.1246/bcsj.67.2320
  7. M. K. Mahanti and B. Kuotsu, J. Org. Chem., 61, 8875 (1996). https://doi.org/10.1021/jo961079m
  8. H. B. Davis, R. M. Sheets, and W. W. Pandler, Heterocycles, 22, 2029 (1984). https://doi.org/10.3987/R-1984-09-2029
  9. M. R. Pressprich, R, D. Willett, and H. B. Davis, Inorg. Chem., 27, 260 (1988). https://doi.org/10.1021/ic00275a009
  10. I. S. Koo, J. S. Kim, and S. K. An, J. Korean Chem. Soc., 43, 527 (1999).
  11. R. Tayebee, J. Korean Chem. Soc., 52, 23 (2008). https://doi.org/10.5012/jkcs.2008.52.1.023
  12. R. Y. Sung, H. Choi, and I. S. Koo, Bull. Korean Chem. Soc., 30, 1579 (1988)
  13. Y. S. Kim, H. Choi, and I. S. Koo, Bull. Korean Chem. Soc., 31, 3279 (2010). https://doi.org/10.5012/bkcs.2010.31.11.3279