Simulation Study of Capacitively Coupled Oxygen Plasma with Plasma Chemistry including Detailed Electron Impact Reactions

전자충격반응을 포함하는 플라즈마 화학반응을 고려한 용량결합형 산소플라즈마의 전산모사 연구

  • Kim, Heon Chang (Department of Chemical Engineering, Hoseo University)
  • 김헌창 (호서대학교 화학공학과)
  • Received : 2011.09.28
  • Accepted : 2011.10.07
  • Published : 2011.12.10


Two dimensional simulation results of a capacitively coupled oxygen plasma in a cylindrical reactor geometry are presented. Detailed electron impact reaction rates, which strongly depend on electron energy, are computed from collision cross sections of electrons with $O_2$ and O. Through the coupling of a three moment plasma model with a neutral chemistry/transport model are predicted spatiotemporal distributions of both charged species (electron, $O_2{^+}$, $O^+$, $O_2{^-}$, and $O^-$) and neutral species including ground states ($O_2$ and O) and metastables, known to play important roles in oxygen plasma, such as $O_2(a^1{\Delta}_g)$, $O_2(b^1{{\Sigma}_g}^+)$, $O(^1D)$, and $O(^1S)$. The simulation results clearly verify the existence of a double layer near sheath boundaries in the electronegative plasma.


three moment model;capacitively coupled plasma;oxygen plasma;electron impact reaction;metastables


  1. S. K. Park, J. B. Kim, and H. C. Kim, J. KSDET, 8, 59 (2009).
  2. H. Mao, D. Wu, W. Wu, J. Xu, and Y. Hao, Nanotechnol., 20, 445304 (2009).
  3. S. Kim, C. Delker, P. Chen, C. Zhou, S. Ju, and D. B. Janes, Nanotechnol., 21, 145207 (2010).
  4. D. Hayashi and K. Kadota, Japan. J. Appl. Phys., 38, 225 (1999).
  5. H. M. Katsch, T. Sturm, E. Quandt, and H. F. Dobele, Plasma Sources Sci. Technol., 9, 323 (2000).
  6. M. W. Kiehlbauch and D. B. Graves, J. Vac. Sci. Technol. A, 21, 660 (2003).
  7. J. T. Gudmundsson, J. Phys. D : Appl. Phys., 37, 2073 (2004).
  8. H. C. Kim and V. I. Manousiouthakis, J. Vac. Sci. Technol., A, 16, 2162 (1998).
  9. H. C. Kim, Y. T. Sul, and V. I. Manousiouthakis, IEEE Trans. Plasma. Sci., 32, 399 (2004).
  10. W. L. Morgan and B. M. Penetrante, Comput. Phys. Commun., 58, 127 (1990).
  11. A. V. Phelps, JILA Information Center Report No. 28, University of Colorado, Boulder (1985).
  12. E. Krishnakumar and S. K. Srivastava, Int. J. Mass Spectrom. Ion Processes, 113, 1 (1992).
  13. D. Rapp and D. D. Briglia, J. Chem. Phys., 43, 1480 (1965).
  14. R. R. Laher and F. R. Gilmore, J. Phys. Chem. Ref. Data, 19, 277 (1990).
  15. M Mcfarland, D. L. Albritton, F. C. Fehsenfeld, E. E. Ferguson, and A. L. Schmeltekopf, J. Chem. Phys., 59, 6620 (1973).
  16. R. M. Snuggs, D. J. Volz, J. H. Schummers, D. W. Martin, and E. W. Mcdaniel, Phys. Rev. A: At., Mol., Opt. Phys., 3, 477 (1971).
  17. F. C. Fehsenfeld, A. L. Schmeltekopf, H. I. Schiff, and E. E. Ferguson, Planetary and Space Science, 15, 373 (1967).
  18. F. C. Fehsenfeld, E. E. Ferguson, and A. L. Schmeltekopf, J. Chem. Phys., 45, 1844 (1966).
  19. R. E. Olson, J. R. Peterson, and J. Moseley, J. Chem. Phys., 53, 3391 (1970).
  20. W. H. Aberth and J. R. Peterson, Phys. Rev. A: At., Mol., Opt. Phys., 11, 158 (1970).
  21. F V. A. Feoktistov, D. V. Lopaev, K. S. Klopovsky, and O. B. Popovicheva, J. Nucl. Mater., 200, 309 (1993).
  22. K. Masek, L. Laska, and T. Ruzicka, Czech. J. Phys. Sec. B, B28, 1321 (1978).
  23. F. K. Schofield, Planetary and Space Science, 15, 643 (1967).
  24. M. Vialle, M. Touzeau, G. Gousset, and C. M. Ferreira, J. Phys. D: Appl. Phys., 24, 301 (1991).
  25. Y. Ichikawa, R. L. C. Wu, and T. Kaneda, J. Appl. Phys., 67, 108 (1990).
  26. H. W. Ellis, R. Y. Pai, E. W. McDaniel, E. A. Mason, and L. A. Viehland, Atomic Data and Nuclear Data Tables, 17, 177 (1976).
  27. I. G. Kouznetsov, A. J. Lichtenberg, and M. A. Lieberman, J. Appl. Phys., 86, 4142 (1999).