Adsorption Characteristics of Uranium (VI) Ion on OenNdien Resin with Styrene Hazardous Material

스타이렌 위험물을 포함한 OenNdien 수지에 의한 우라늄(VI) 이온의 흡착 특성

  • Kim, Joon-Tae (Department of Chemistry, Chosun University)
  • 김준태 (조선대학교 자연과학대학 화학과)
  • Received : 2011.09.21
  • Accepted : 2011.10.21
  • Published : 2011.12.10

Abstract

Ion exchange resins have been synthesized from chloromethylated styrene-1,4-divinylbenzene (DVB) with 1%, 2%, 5% and 15%-crosslinkage and macrocyclic ligand of $OenNdien-H_4$ by copolymerization. The adsorption characteristics of uranium (${UO_2}^{2+}$), potassium ($K^+$) and neodymium ($Nd^{3+}$) metallic ions have been investigated. The synthesis of these resins was confirmed by content of chlorine, element analysis, and IR-spectrum. The effects of pH, time, and crosslinkage on adsorption of metallic ions were also studied. The uranium ion showed the fast adsorption on the resins above pH 3. The optimum equilibrium time for the adsorption of metallic ions was about two hours. The adsorption selectivity determined in methanol solution was in increasing order uranium (${UO_2}^{2+}$) > potassium ($K^+$) > neodymium ($Nd^{3+}$) ion. Moreover, the adsorption was increased with the crosslinkage concentration in order of 1%, 2%, 5% and 15%-crosslinkage resin.

Keywords

styrene;divinylbenzene;crosslinkage;macrocyclic ligand;$OenNdien-H_4$

References

  1. K. W. Chi, Y. S. Ahn, K. T. Shim, H. Huh, and J. S. Ahn, Bull. Kor. Chem. Soc., 23, 688 (2002). https://doi.org/10.5012/bkcs.2002.23.5.688
  2. H. K. Frensddorff, J. Am. Chem. Soc., 93, 4684 (1971). https://doi.org/10.1021/ja00748a006
  3. L. F. Lindoy, P. G. Grimslery, H. C. Lip, R. J. Smith, and J. T. Baker, Aust. J. Chem., 30, 2095 (1977). https://doi.org/10.1071/CH9772095
  4. L. F. Lindoy, K. R. Adam, D. S. Bladwine, A. Bashall, M. McPartlin, and H. R. Powell, J. Chem. Soc., Dalton Trans., 237 (1994).
  5. M. A. Ahearn, J. Kim, A. J. Leong, L. F. Lindoy, G. V. Meehan, and O. A. Mattews, J. Chem. Soc., Dalton Trans., 3591 (1976).
  6. K. S. Huh and S. G. Sin, Appl. Chem. Eng., 9, 680 (1998).
  7. K. H. Park, Y. D. Kwon, Y. J. Chung, and E. K. Jang, Appl. Chem. Eng., 15, 106 (2004).
  8. H. D. Jeong, D. S. Kim, and K. I. Kim, Appl. Chem. Eng., 16, 123 (2005).
  9. G. Bombieri and G. Depaoli, Inorg. Chem. Acta., 18, 123 (1976).
  10. T. Hayashita, J. H. Lee, S. Chem, and R. A. Bartsch, Anal. Chem., 63, 1844 (1991). https://doi.org/10.1021/ac00017a032
  11. E. Blasius and K. P. Janzen, Pure Appl. Chem., 54, 2115 (1982). https://doi.org/10.1351/pac198254112115
  12. C. W. Park, Industry an engineer of hazardous materials, Namyang Munhwa, Seoul, 3-92 (2007).
  13. H. Egawa, T. Nonaka, and M. Ikari, J. Appl. Poly. Sci., 29, 2045 (1984). https://doi.org/10.1002/app.1984.070290613
  14. J. T. Kim, Appl. Chem. Eng., 20, 165 (2009).
  15. S. M. Howdle, K. Jerabek, V. Leocorbo, P. C. Marr, and D. C. Sherrington, Polymer, 41, 7272 (2000).
  16. R. C. Weast, Handbook of chemistry and physics, 70th, D52, CRC Press, New York (1989).
  17. C. J. Pederson, J. Am. Chem. Soc., 92, 386 (1970). https://doi.org/10.1021/ja00705a605