A Study on the Rheological Properties of Branched Polypropylene/silicate Composites

분지형 폴리프로필렌/실리케이트 복합체의 유변학적 특성 연구

  • Dahal, Prashanta (Department of Environment Engineering, Kongju National University) ;
  • Yoon, Kyung Hwa (Department of Environment Engineering, Kongju National University) ;
  • Kim, Youn Cheol (Department of Environment Engineering, Kongju National University)
  • 프러산터 (공주대학교 신소재공학부 고분자공학) ;
  • 윤경화 (공주대학교 신소재공학부 고분자공학) ;
  • 김연철 (공주대학교 신소재공학부 고분자공학)
  • Received : 2011.09.02
  • Accepted : 2011.10.12
  • Published : 2011.12.10


Branched polypropylenes (LCB-PP) with a long chain branch were prepared by the solid-state and molt-state reaction. Divinylbenzene (DVB), 1,4-benzenediol (RES), and furfuryl sulphide (FS) were used as branching agents of fabricate LCB-PP/silicate composites. Chemical structures, thermal properties, and rheological properties of the LCB-PP were determined by FT-IR, DSC, TGA, and dynamic rheometer (ARES). The chemical structure of the LCB-PP was confirmed by the existence of =C-H stretching peak of the branching agent at $3100cm^{-1}$. From DSC and TGA results, the melting reaction was more effective than the solid state reaction in the manufacture of LCB-PP, which was additionally certified by rheological properties. Based on rheological properties, FS was the best for branching efficiency of PP. Compared to PP, LCB-PPs indicated an increase of complex viscosity in the low frequency and shear thinning tendency, and G'-G" plot represented an increase in elasticity and the heterogeneousness in a melt state. Rheological properties of LCB-PP/silicate composites were observed with the silicate content. When 5 wt% silicate was added in LCB-PP, distinct changes in the shear thinning and the slope of G'-G" plots were observed.


polypropylene;long chain branch;silicate;rheological property


Supported by : 한국연구재단


  1. H. O. Chung, J. S. Lee, O. N. Kim, and J. C. Hyun, The Korean Journal of Rheology, 8, 119 (1996).
  2. S. Li, M. Xiao, D. Wei, H. Xiao, F. Hu, and A. Zheng, Polymer, 50, 6121 (2009). https://doi.org/10.1016/j.polymer.2009.10.006
  3. J. Li, C. Zhou, and W. Gang, Polymer Testing, 22, 217 (2003). https://doi.org/10.1016/S0142-9418(02)00085-5
  4. C. K. Hong, M. J. Kim, S. H. Oh, Y. S. Lee, and C. Nah, J. Ind. Eng. Chem., 14, 236 (2008). https://doi.org/10.1016/j.jiec.2007.11.001
  5. C. H. Hong, Y. B. Lee, J. W. Bae, J. Y. Jho, B. U. Nam, and T. W. Hwang, J. Ind. Eng. Chem., 11, 76 (2005).
  6. Y. C. Kim and C. Y. Lee, J. Korean Ind. Eng. Chem., 46, 106 (2008).
  7. O. M. Istrate and B. Chen, Soft Matter, 7, 1840 (2011). https://doi.org/10.1039/c0sm01052a
  8. W. Zhai, C. B. Park, and M. Kontopoulou, Ind. Eng. Chem. Res., 50, 7282 (2011) https://doi.org/10.1021/ie102438p
  9. E. Borsig, M. van Duin, A. D. Gotsis, and F. Picchioni, Euro. Polym. J., 44, 200 (2008). https://doi.org/10.1016/j.eurpolymj.2007.10.008
  10. C. J. Tsenoglou and A. D. Gotsis, Macromolecules, 34, 4685 (2001). https://doi.org/10.1021/ma010370n
  11. J. H. Tian, W. Yu, and C. X. Zhou, Polymer, 47, 7962 (2006). https://doi.org/10.1016/j.polymer.2006.09.042
  12. M. Yamaguchi and M. H. Wagner, Polymer, 47, 3629 (2006). https://doi.org/10.1016/j.polymer.2006.03.052
  13. S. A. Mousavi, S. Dadbin, M. Frounchi, D. C. Venerus, and T. G. Medina, Radiation Physics and Chemistry, 79, 1088 (2010). https://doi.org/10.1016/j.radphyschem.2010.04.010
  14. Kolodka, E. Wang, W.-J. Zhu, and S. Hamielec, A. Macromolecules, 35, 10062 (2002). https://doi.org/10.1021/ma021171m
  15. R. P. Lagendijk, A. H. Hogt, A. Buijtenhuijs, and A. D. Gotsis, Polymer, 42, 10035 (2001). https://doi.org/10.1016/S0032-3861(01)00553-5
  16. C. He, S. Costeux, P. Wood-Adams, and J. M. Dealy, Polymer, 44, 7181 (2003). https://doi.org/10.1016/j.polymer.2003.09.009
  17. S. J. Choi, K. H. Yoon, H. S. Kim, S. Y. Yoo, and Y. C. Kim, Polymer (Korea), 35, 1 (2011).
  18. H. Y. Kim, J. H. Jang, B. N. Kim, J. H. Lee, and D. H. Han, Applied Chemistry, 8, 378 (2004).
  19. S. H. Tabataba, P. J. Carreau, and A. Ajji, Chem. Eng. Sci., 64, 4719 (2009). https://doi.org/10.1016/j.ces.2009.04.009
  20. K. Hyun, K. H. Ahn, S. J. Lee, M. Sugimoto, and K. Koyama, Rheol Acta, 46, 123 (2006). https://doi.org/10.1007/s00397-006-0098-y
  21. F. Yu, H. Zhang, R. Liao, H. Zheng, W. Yu, and C. Zhou, Euro. Polym. J., 45, 2110 (2009). https://doi.org/10.1016/j.eurpolymj.2009.03.011
  22. M. A. Lopez Manchado, J. Biagiotti, L. Torre, and J. M. Kenny, J. Therm. Anal. Cal., 61, 437 (2000). https://doi.org/10.1023/A:1010165317028
  23. Z. J. Zhang, H. P. Xing, J. Qiu, Z. W. Jiang, H. O. Yu, X. H. Du, Y. H. Wang, L. Ma, and T. Tang, Polymer, 51, 1593 (2010). https://doi.org/10.1016/j.polymer.2010.01.063
  24. J. Qian, H. Zhamg, G. Cheng, Z. Huang, S. Dang, and Y. Xu, Sol-Gel Technol., 56, 300 (2010). https://doi.org/10.1007/s10971-010-2306-6