Structures and Properties of Semi-blown Petroleum Asphalt

세미-브로잉 공정에서 석유 아스팔트의 구조, 물성 변화

  • Min, Kyung Eui (R&D Institute, Korea Petroleum Industrial Co. Ltd.) ;
  • Jeong, Han Mo (Department of Chemistry, University of Ulsan)
  • 민경의 (한국석유공업(주) 기술연구소) ;
  • 정한모 (울산대학교 자연과학대학 화학과)
  • Received : 2011.08.22
  • Accepted : 2011.11.07
  • Published : 2011.12.10

Abstract

The vacuum residue of petroleum refinery, i.e. asphalt, was modified through a non-catalytic air blowing process to prepare the semi-blown asphalt. Changes in composition, chemical structure, and physical properties of asphalt were examined. The result from the thin layer chromatography showed that the asphaltene content in asphalt was increased by the air blowing on account of the aromatization of aliphatic hydrocarbon and condensation. These changes in molecular structure were also confirmed by $^1H-NMR$, differential scanning calorimetry, and thermogravimetry. Because of the molecular structure changes, the penetration of asphalt was decreased and the softening point and the flash point of asphalt were increased.

Keywords

semi-blown asphalt;air blowing process;asphaltene;molecular structure;thermal properties;physical properties

Acknowledgement

Supported by : 한국연구재단

References

  1. H. Abraham, Asphalts and Allied Substances, Vol. 1. Historical Review and Natural Raw Materials, 5th Eds. New York, D. Van Nostrand Co., Inc. (1960).
  2. T. F. Yen and G. V. Chilingarian, Developments in Petroleum Sience, 40A, Asphaltenes and Asphalts, 1, Elsevier Science, N. Y. (1994).
  3. J. G. Speight, Handbook of Petroleum Product Analysis, Wiley-Interscience (2002).
  4. T. F. Yen, Am. Chem. Soc., Div. Pet. Chem. Prepr., 17, F102 (1972).
  5. R. B. Girdler, Proc. Assoc. Asph. Pav. Tech., 34, 45 (1965).
  6. H. Fukuoka, Petrotech., 8, 437 (1985).
  7. J. S. Bahl and H. Singh, Revue de L'institut Francais de Petrole, 38, 413 (1983). https://doi.org/10.2516/ogst:1983024
  8. M. M. Boduszynski, Symposium on Chemistry of Asphaltene, Division of Petroleum, American Chemical Society, Washington DC. page 935 (1979).
  9. M. A. Quddus, S. N. Sarwar, and F. Khan, Fuel, 74, 684 (1995). https://doi.org/10.1016/0016-2361(95)91103-6
  10. H. E. Lubbers, Bitumen in de weg en waterbouw, Nederlands Adviesbureau voor Bitumentoepassingen, Gouda, April (1985).
  11. 田中晴也, 川付正明, 第 21回 日本道路協會論文集, 230 (1995).
  12. C. Gaestel, R. Simadaja, and K. A. Lamminan, Rev. Gen. Routes et Aerodromes, 466, 85 (1971).
  13. S. Gillet, P. Rubini, J. J. Delpeuch, J. C. Escalier, and P. Valentin, Fuel, 60, 221 (1981). https://doi.org/10.1016/0016-2361(81)90183-6
  14. S. Gillet, P. Rubini, J. J. Delpeuch, J. C. Escalier, and P. Valention, Fuel, 60, 226 (1981). https://doi.org/10.1016/0016-2361(81)90184-8
  15. J. Dereppe, C. Moreaux, and H. Castex, Fuel, 57, 435 (1978). https://doi.org/10.1016/0016-2361(78)90061-3
  16. M. U. Hasan, M. F. Ali, and A. Bukhari, Fuel, 62, 518 (1983). https://doi.org/10.1016/0016-2361(83)90219-3
  17. L. C. Michon, D. A. Netzel, T. F. Turner, D. Martin, and J. P. Planche, Energ. Fuel., 13, 602 (1999). https://doi.org/10.1021/ef980184r
  18. T. D. Khong, S. L. Malhotra, and L. Blanchard, Rheol. Acta, 17, 654 (1978). https://doi.org/10.1007/BF01522038
  19. J. F. Masson, V. Leblond, J. Margeson, and S. Bundalo-Perc, J. Microsc., 227, 191 (2007). https://doi.org/10.1111/j.1365-2818.2007.01796.x
  20. A. Adedeji, T. Grünfelder, F. S. Bates, and C. W. Macosko, Polym. Eng. Sci., 36, 1707 (1996). https://doi.org/10.1002/pen.10567
  21. G. M. Memon and B. H. Chollar, J. Therm. Anal., 49, 601 (1997). https://doi.org/10.1007/BF01996742
  22. E. S. Freeman and B. J. Carroll, J. Phys. Chem., 62, 394 (1958). https://doi.org/10.1021/j150562a003
  23. J. P. H. Pfeiffer and P. M. van Doormaal, J. Inst. Pet., 22, 414 (1936).