Conversion Characteristics of CH4 and CO2 in an Atmospheric Pressure Plasma Reactor

대기압 플라즈마 반응기에서의 CH4와 CO2의 전환처리 특성

  • Kim, Tae Kyung (Department of Chemical Engineering, Kangwon National University) ;
  • Lee, Won Gyu (Department of Chemical Engineering, Kangwon National University)
  • 김태경 (강원대학교 화학공학과) ;
  • 이원규 (강원대학교 화학공학과)
  • Received : 2011.08.13
  • Accepted : 2011.10.07
  • Published : 2011.12.10

Abstract

Conversion characteristics of $CH_4$ and $CO_2$ was studied using an atmospheric pressure plasma for the preparation of synthesis gas composed of $H_2$ and CO. The effects of delivered power, total gas flow rate, and gas residence time in the reactor on the conversion of $CH_4$ and $CO_2$ were evaluated in a plasma reactor with the type of dielectric barrier discharge. The increase of reactor temperature did not affect on the increase of conversion if the temperature does not reach to the appropriate level. The conversion of $CH_4$ and $CO_2$ largely increased with increasing the delivered power. As the $CH_4/CO_2$ ratio increased, the $CH_4$ conversion decreased, whereas the $CO_2$ conversion increased. Generally, the $CH_4$ convesion was higher than the $CO_2$ conversion through the variation of the process parameters.

Keywords

greenhouse gas;synthesis gas;atmosperic pressure plasma;dielectric barrier discharge;$CH_4$ and $CO_2$ conversion

Acknowledgement

Supported by : 한국과학재단

References

  1. M. Hokazono and H. Fujimoto, J. Appl. Phys., 62, 1585 (1987). https://doi.org/10.1063/1.339606
  2. Y. P. Zhang, Y. Li, Y. Wang, C. J. Liu, and B. Eliasson, Fuel Process Technol., 83, 101 (2003). https://doi.org/10.1016/S0378-3820(03)00061-4
  3. M. W. Li, G. H. Xu, Y. L. Tian, L. Chen, and H. F. Fu, J. Phys. Chem. A, 108, 1687 (2004). https://doi.org/10.1021/jp037008q
  4. S. L. Yao, M. Okumoto, A. Nakayama, and E. Suzuki, Energy Fuels, 15, 1295 (2001). https://doi.org/10.1021/ef010089+
  5. U. Roland, F. Holzer, and F.-D. Kopinke, Appl. Catal. B, 58, 217 (2005). https://doi.org/10.1016/j.apcatb.2004.11.024
  6. T. Jiang, Y. Li, C. Liu, G. Xu, B. Eliasson, and B. Xue, Catal. Today, 72, 229 (2002). https://doi.org/10.1016/S0920-5861(01)00497-7
  7. M. Heintze and B. Pietruszka, Catal. Today, 89, 21 (2004). https://doi.org/10.1016/j.cattod.2003.11.006
  8. B. Eliasson, C. J. Liu, and U. Kogelschatz, Ind. Eng. Chem. Res., 39, 1221 (2000). https://doi.org/10.1021/ie990804r
  9. K. Zhang, U. Kogelschatz, and B. Eliasson, Energy Fuels, 15, 395 (2001). https://doi.org/10.1021/ef000161o
  10. C. J. Liu, R. Mallinson, and L. Lobbin, Appl. Catal. A, 178, 17 (1999). https://doi.org/10.1016/S0926-860X(98)00281-6
  11. K. Zhang, B. Eliasson, and U. Kogelschatz, Ind. Eng. Chem. Res., 41, 1462 (2002). https://doi.org/10.1021/ie0105021
  12. J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, IEEE Trans. Plasma Sci., 26, 1685 (1998). https://doi.org/10.1109/27.747887
  13. W. S. Kang, J. M. Park, Y. Kim, and S. H. Hong, IEEE Trans. Plasma. Sci., 31, 504 (2003.) https://doi.org/10.1109/TPS.2003.815469
  14. H. W. Lee, S. H. Nam, A-A. H. Mohamed, G. C. Kim, and J. K. Lee, Plasma Process. Polym., 7, 274 (2010). https://doi.org/10.1002/ppap.200900083
  15. H. K. Song, H. Lee, J. W. Choi, and B. K. Na, Plasma Chem. Plasma Process, 24, 57 (2004). https://doi.org/10.1023/B:PCPP.0000004882.33117.42