Hydrogen Recombination over Pt/TiO2 Coated Ceramic Honeycomb Catalyst

Pt/TiO2 코팅 세라믹 허니컴 촉매를 이용한 수소 제어

  • Kang, Youn Suk (Department of Environmental Energy Systems Engineering, Graduate School of Kyonggi University) ;
  • Kim, Sung Su (Department of Environmental Energy Systems Engineering, Graduate School of Kyonggi University) ;
  • Seo, Phil Won (Department of Research & Development, Ceracomb Co., Ltd.) ;
  • Lee, Seung Hyun (Department of Research & Development, Ceracomb Co., Ltd.) ;
  • Hong, Sung Chang (Department of Environmental Energy Systems Engineering, Graduate School of Kyonggi University)
  • 강연석 (경기대학교 일반대학원 환경에너지시스템공학과) ;
  • 김성수 (경기대학교 일반대학원 환경에너지시스템공학과) ;
  • 서필원 ((주)세라컴 기술연구소) ;
  • 이승현 ((주)세라컴 기술연구소) ;
  • 홍성창 (경기대학교 일반대학원 환경에너지시스템공학과)
  • Received : 2011.08.12
  • Accepted : 2011.10.08
  • Published : 2011.12.10

Abstract

Passive autocatalytic recombiner (PAR) is considered as an explosive gas control system in operating NPP plants. This work investigates and evaluates hydrogen recombination performance over manufactured $Pt/TiO_2$ catalysts. When the space velocity increases, the hydrogen conversion decreased, while hydrogen depletion rate (g/sec) increases highly in $35000{\sim}100000hr^{-1}$ Gas Hourly Space Velocity (GHSV). Hydrogen conversion and depletion rate with Pt loading is investigated. As a result, there were no differences in the hydrogen conversion, but exothermic heating rate (K/sec) is increases as Pt loading increases. The catalyst showes a high hydrogen conversion efficiency of 80% under atmospheric conditions.

Keywords

nuclear power plant;hydrogen;catalyst;recombination;PAR

References

  1. J. Kim, S.-W. Hong, S.-B. Kim, and H.-D. Kim, J. Computational Fluids Engine., 10, 9 (2005).
  2. M. Rinnemo, O. Deutschmann, F. Behrendt, and B. Kasemo, Combust. Flame, 111, 312 (1997). https://doi.org/10.1016/S0010-2180(97)00002-3
  3. C. Appel, J. Mantzaras, R. Schaeren, R. Bombach, A. Inauen, B. Kaeppeli, B. Hemmerling, and A. Stampanoni, Combust. Flame, 128, 340 (2002). https://doi.org/10.1016/S0010-2180(01)00363-7
  4. E.-A. Reinecke, I. M. Tragsdorf, and K. Gierling, Nucl. Eng. Des., 230, 49 (2004). https://doi.org/10.1016/j.nucengdes.2003.10.009
  5. E. Bachellerie, F. Arnould, M. Auglaire, B. de Boeck, O. Braillard, B. Eckardt, F. Ferroni, and R. Moffett, Nucl. Eng. Des., 221, 151 (2003). https://doi.org/10.1016/S0029-5493(02)00330-8
  6. P. Royl, H. Rochholz, W. Breitung, J. R. Travis, and G. Necker, Nucl. Eng. Des., 202, 231 (2000). https://doi.org/10.1016/S0029-5493(00)00332-0
  7. H. Chon and G. Seo, An Introduction to Catalyst, 6, 254, Hanrimwon, Seoul (2002).
  8. S. K. Jo, J. K. Jin, and S. J. Kwon, Catal. Today, 155, 45 (2010). https://doi.org/10.1016/j.cattod.2009.04.021
  9. F. Fineschi, M. Bazzichi, and M. Carcassi, Nucl. Eng. Des., 166, 481 (1996). https://doi.org/10.1016/S0029-5493(96)01264-2
  10. J. W. Park and Ph. D. Dissertation, Seoul National University, Seoul, Korea (2011).
  11. S. S. Kim, H. J. Choi, and S. C. Hong, Appl. Chem. Eng., 21, 18 (2010).
  12. N. E. Fernandes, Y. K. Park, and D. G. Vlachos, Combust. Flame, 118, 164 (1999). https://doi.org/10.1016/S0010-2180(98)00162-X
  13. J. T. Richardson, Principles of Catalyst Development, 2, 28, Springer, New York (1989).