Study on the Fabrication of Porous Uranium Oxide Granule Using a Rotary Voloxidizer

회전형 휘발성 산화장치 이용 다공성 우라늄산화물 그래뉼 제조 연구

  • Lee, Jae-Won (Korea Atomic Energy Research Institute) ;
  • Yun, Yeo-Wan (Korea Atomic Energy Research Institute) ;
  • Shin, Jin-Myeong (Korea Atomic Energy Research Institute) ;
  • Lee, Jung-Won (Korea Atomic Energy Research Institute) ;
  • Park, Guen-IL (Korea Atomic Energy Research Institute) ;
  • Park, Jang-Jin (Korea Atomic Energy Research Institute)
  • 이재원 (한국원자력연구원) ;
  • 윤여완 (한국원자력연구원) ;
  • 신진명 (한국원자력연구원) ;
  • 이정원 (한국원자력연구원) ;
  • 박근일 (한국원자력연구원) ;
  • 박장진 (한국원자력연구원)
  • Received : 2011.08.11
  • Accepted : 2011.10.04
  • Published : 2011.12.10

Abstract

The fabrication characteristics of porous uranium oxide granules from $U_3O_8$ powder was investigated in terms of initial particle bed motions such as slumping and rolling, thermal treatment conditions, and rotational velocities in slumping motion using a rotary voloxidizer. With respect to the initial particle bed motion the recovery rate of granule of above 1 mm in slumping motion was higher than that in the rolling motion. Rolling motion was changed into slumping motion with high slumping frequency by formation of granules from fine particles. Recovery rate of granule significantly increased with the increas in thermal treatment temperature and time of upto 10 h. As the rotational velocity of voloxidizer in the case of the initial particle bed showing slumping motion increased, the recovery rate of granule increased from 81.5 to 88.7%. However, the rotational velocity of 2 rpm provided an effective density, crushing strength and sphericity of granules.

Keywords

advanced voloxidation;particle size control;granulation;rotary voloxidizer;uranium oxide

Acknowledgement

Supported by : 한국연구재단

References

  1. H. S. Lee, J. M. Hur, J. G. Kim, D. H. Ahn, Y. Z. Cho, and S. W. Paek, Energy Procedia, 7, 391 (2010).
  2. G. Uchiyama, M. Kitamura, K. Yamazaki, S. Torikai, S. Sugikawa, M. Maeda, and T. Tsujino, Radioactive Waste Management and the Nuclear Fuel Cycle, 17, 63 (1992).
  3. Y. Kosaka, K. Itoh, H. Kitao, Y. Mori, T. Shimada, H. Yamatoya, K. Sutou, and O. Amano, J. Nucl. Sci. Tech., Supplement 3, 902 (2002).
  4. B. R. Westphal, K. J. Bateman, C. D. Morgan, J. F. Berg, P. J. Crane, D. G. Cummings, J. J. Giglio, M. W. Huntley, R. P. Lind, and D. A. Sell, Nucl. Tech., 162, 153 (2008). https://doi.org/10.13182/NT08-A3942
  5. J. J. Park, J. M. Shin, G. I. Park, Jae W. Lee, J. W. Lee, and K. C. Song, Proc. of Global 2009, 9161, Paris (2009).
  6. Y. Sakamura, M. Iizuka, and T. Inoue, Proc. of Global 2009, 9176, Paris, France (2009).
  7. J. W. Lee, J. W. Lee, M. S. Yang, K. C. Song, and G. I. Park, Proc. of Global 2007, 921, Boise Idaho, USA (2007).
  8. A. A. Boateng, Rotary Kiln : Transport Phenomena and Transport Process, 265, Butterworth-Heinemann, Oxford, United Kingdom (2008).
  9. J. Mellmann, Powder Technol., 118, 251 (2001). https://doi.org/10.1016/S0032-5910(00)00402-2
  10. ASTM C830 (2006).
  11. Y. S. Kim, J. Nucl. Mater., 279, 173 (2000). https://doi.org/10.1016/S0022-3115(00)00019-2