Effect of Size and Morphology of Silica Abrasives on Oxide Removal Rate for Chemical Mechanical Polishing

기계화학적 연마용 실리카 연마재의 형상과 크기가 산화막 연마율에 미치는 영향

  • Lee, Jinho (Eco Composite Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lim, Hyung Mi (Eco Composite Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Huh, Su-Hyun (Young Il Chemiced Co., Ltd.) ;
  • Jeong, Jeong-Hwan (Eco Composite Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Dae Sung (Eco Composite Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Seung-Ho (Eco Composite Materials Center, Korea Institute of Ceramic Engineering and Technology)
  • 이진호 (한국세라믹기술원 그린세라믹본부 에코복합소재센터) ;
  • 임형미 (한국세라믹기술원 그린세라믹본부 에코복합소재센터) ;
  • 허수현 ((주)영일화성) ;
  • 정정환 (한국세라믹기술원 그린세라믹본부 에코복합소재센터) ;
  • 김대성 (한국세라믹기술원 그린세라믹본부 에코복합소재센터) ;
  • 이승호 (한국세라믹기술원 그린세라믹본부 에코복합소재센터)
  • Received : 2011.07.28
  • Accepted : 2011.10.31
  • Published : 2011.12.10

Abstract

Spherical and non-spherical silica particles prepared by the direct oxidation were studied for the effect of the particle size and shape of these particles on oxide CMP removal rate. Spherical silica particles, which have 10~100 nm in size, were prepared by the direct oxidation process from silicon in the presence of alkali catalyst. The 10 nm silica particles were aggregated by addition of an acid, an alcohol, or a silane as an aggregation inducer between the particles. Two or more aggregated silica particles were used as a seed to grow non spherical silica particles in the direct oxidation process of silicon in the presence of alkali catalyst. The oxide removal rate of spherical silica particles increased with increasing an average particle size for spherical silica abrasives in the oxide CMP. It further increased non-spherical particles, compared with the spherical particles in the similar average particle size.

Keywords

silica sol;aggregation non-spherical particle;CMP slurry;oxide removal rate;PETEOS silicon wafer

References

  1. M. F. Bechtold and O. E. Snyder, U. S. Pat. 9,574,902 (1951).
  2. A. Yoshida, The Colloid Chemistry of Silica, Advances in Chemistry, Series 234, ed. H. E. Bergna, p51-62, American Chemical Society, Washington DC, USA (1994).
  3. J. Y. Kim, Korea Patent 10-0349632 (Young Il Chem. Co.) (2002).
  4. H. M. Lim, H. C. Shin, S. H. Huh, and S. H. Lee, Solid State Phenomena, 124-126, 667 (2007). https://doi.org/10.4028/www.scientific.net/SSP.124-126.667
  5. W. K. Na, H. M. Lim, S. H. Huh, S. E. Park, Y. S. Lee, and S. H. Lee, Mater. Sci. Eng. B, 163, 82 (2009). https://doi.org/10.1016/j.mseb.2009.05.011
  6. H. M. Lim, J. Lee, J.-H. Jeong, S.-G. Oh, and S.-H. Lee, Engineering, 2, 998 (2010). https://doi.org/10.4236/eng.2010.212126
  7. H. S. Lee, B. Y. Park, H. D. Seo, J. W. Jung, S. H. Jeong, and H. D. Jeong, Transactions of the KSME A, 29, 983 (2005). https://doi.org/10.3795/KSME-A.2005.29.7.983
  8. Z. Lu, S.-H. Lee, S. V. Babu, and E. Matijevic , J. Colloid Interface Sci., 261, 55 (2003). https://doi.org/10.1016/S0021-9797(02)00166-2
  9. M.-S. Tsai, C.-H. Yang, and P.-Y. Huang, Mater. Sci. Eng. B, 123, 238 (2005). https://doi.org/10.1016/j.mseb.2005.08.084