Synthesis and Characterization of 4-Component Polyimide Films with Various Diamine and Dianhydride Compositions

다양한 조성 변화에 따른 4성분계 폴리이미드 필름 제조와 물성분석

  • Park, Yun Jun (Energy Materials Research Center, Korea Research Institute of Chemical Technology) ;
  • Yu, Duk Man (Energy Materials Research Center, Korea Research Institute of Chemical Technology) ;
  • Choi, Jong Ho (Department of New and Renewable Energy, Kyungil University) ;
  • Ahn, Jeong-Ho (Department of Polymer Science and Engineering, Sunkyunkwan University) ;
  • Hong, Young Taik (Energy Materials Research Center, Korea Research Institute of Chemical Technology)
  • 박윤준 (한국화학연구원 에너지소재연구센터) ;
  • 유덕만 (한국화학연구원 에너지소재연구센터) ;
  • 최종호 (경일대학교 신재생에너지학과) ;
  • 안정호 (성균관대학교 고분자시스템공학과) ;
  • 홍영택 (한국화학연구원 에너지소재연구센터)
  • Received : 2011.07.21
  • Accepted : 2011.09.28
  • Published : 2011.12.10

Abstract

Various poly(amic acid)s were synthesized from PMDA/BPDA/p-PDA/ODA with different mole ratios and effectively converted into 4-component polyimide films by thermal imidization. The chemical structures and thermo-mechanical properties of polyimide films were examined using Fourier transform infrared spectroscopy (FT-IR), thermo-gravimetric analyzer (TGA), thermo-mechanical analyzer (TMA), dynamic mechanical analyzer (DMA) and universal tensile machine (UTM). The tensile strength, modulus, and thermal properties of polyimides films increased with the amount of rigid PMDA and p-PDA, while the elongation and moisture absorption of polyimide films increased with the amount of flexible BPDA and ODA. One of 4-component polyimide films exhibited a similar coefficient of thermal expansion (CTE) value to that of copper when it was composed of PMDA : BPDA : p-PDA : ODA with the ratio of 5 : 5 : 4 : 6. Thus, this polyimide film could be useful for a base film for flexible copper clad laminates (FCCL) of flexible printed circuit boards.

Keywords

polyimide;4-component;monomer composition change;coefficient of thermal expansion;thermal and mechanical properties

References

  1. J. C. Shin, S. M. Choi, H. B. Sim, S.-H. Kwon, and M. H. Yi, Polymer (Korea), 28, 494 (2004).
  2. J. A. Moor and D. R. Robello, Macromolecules, 22, 1084 (1989). https://doi.org/10.1021/ma00193a015
  3. J. Yang and M. H. Lee, Macromol. Res., 12, 263 (2004). https://doi.org/10.1007/BF03218398
  4. M. K. Ghosh and K. L. Mittal, Ed., Polyimide: Synthesis, Characterization and Applications, Marcel Dekker, New York, Vol. 1 and 2 (1984).
  5. J. A. Kreuz and J. R. Edman, Adv. Mater., 10, 1229 (1998). https://doi.org/10.1002/(SICI)1521-4095(199810)10:15<1229::AID-ADMA1229>3.0.CO;2-B
  6. S. Kubota, T. Moriwaki, T. Ando, and A. Fukami, J. Appl. Polym. Sci., 33, 1763 (1987). https://doi.org/10.1002/app.1987.070330528
  7. S. Numata, S. Oohara, K. Fujisaki, K. Imaizumi, and N. Kinjyo, J. Appl. Polym. Sci., 31, 101 (1986). https://doi.org/10.1002/app.1986.070310110
  8. M. Hasegawa and S. Horii, Polymer (Japan), 39, 610 (2007).
  9. H.-S. Kim, S.-H. Ha, K.-Y. Chun, H.-S. Han, and Y.-I. Joe, J. Korea Ind. Eng. Chem., 10, 979 (1999).
  10. D. Wilson, B. D. Stenzenberger, and P. M. Hergenrother, Polyimides, Chapman and Hall, New York (1990).