Removal of COD and Color from Anaerobic Digestion Effluent of Livestock Wastewater by Advanced Oxidation Using Microbubbled Ozone

마이크로버블 오존 고도산화를 이용한 축산폐수 혐기소화 배출수의 COD와 색도의 제거

  • Lee, Inkyu (School of Biological Sciences and Biotechnology, Chonnam National University) ;
  • Lee, Eunyoung (Department of Environmental Engineering and Biotechnology, Myongji University) ;
  • Lee, Hyejung (Department of Environmental Engineering and Biotechnology, Myongji University) ;
  • Lee, Kisay (Department of Environmental Engineering and Biotechnology, Myongji University)
  • 이인규 (전남대학교 생물과학.생명기술학과) ;
  • 이은영 (명지대학교 환경생명공학과) ;
  • 이혜정 (명지대학교 환경생명공학과) ;
  • 이기세 (명지대학교 환경생명공학과)
  • Received : 2011.07.17
  • Accepted : 2011.09.05
  • Published : 2011.12.10


Ozone-based advanced oxidation was applied for the treatment of anaerobic digestion effluent of livestock wastewater. Initial COD and color value were 930 mg/L and 0.04, respectively, and the 1/10-diluted wastewater was used for the study. The treatment characteristics were compared between the conventionally generated ozone ($105{\mu}m$) and microbubbled ozone ($13{\mu}m$). The use of microbubbled ozone improved the removal of chemical oxygen demand (COD) and color by 85% and 26%, respectively, compared with the conventionally bubbled ozone. The application of microbubbled $O_3/UV$, $O_3/H_2O_2$, $O_3/UV/H_2O_2$ combinations resulted in 5~10% higher color removal than ozone alone, which implies that the contribution of UV or $H_2O_2$ is not significant in color removal. On the other hand, COD removal could be increased two folds compared with ozone alone through $O_3/UV/H_2O_2$ combination. The contribution of $H_2O_2$ was bigger than UV for COD removal with microbubbled ozone. Due to the enhancement of dissolved ozone and radical activity, the microbubbling enabled us to additional COD removal even after stopping ozone supply in the presence of UV or $H_2O_2$.


ozone;livestock wastewater;advanced oxidation;microbubble;COD;color


Supported by : Myongji University


  1. H. J. Oeller, I. Demel, and G. Weinberger, Water Sci. Technol., 35, 269 (1997).
  2. I. Arslan and I. Balcioglu, I., J. Chem. Tech. Biotechnol., 76, 53 (2001).<53::AID-JCTB346>3.0.CO;2-T
  3. J. L. Tambosi, R. F. de Sena, W. Gebhardt, R. Moreira, H. J. Jose, and H. F. Schroder, Ozone Sci. Eng., 31, 428 (2009).
  4. U. Gunten, Water Res., 37, 1443 (2003).
  5. E. J. Rosenfeldt, K. G. Linden, S. Canonica, and N. von Gunten, Water Res., 40, 3695 (2006).
  6. R. Barker and A. R. Jones, Ozone Sci. Eng., 10, 405 (1988).
  7. M. A. Oneby, C. O. Bromley, J. H. Borchardt, and D. S. Harrison, Ozone Sci. Eng., 32, 43 (2010).
  8. S. D. Richardson, A. D. Thruston, T. V. Caughran, P. H. Chen, T. W. Collette, and T. L. Floyd, Environ. Sci. Technol., 33, 3368 (1999).
  9. K. L. Rakness, Ozone in Drinking Water Treatment : Process design, Operation, and Optimization, AWWA (2005).
  10. J. Hoigne and H. Bader, Water Res., 17, 185 (1983).
  11. B. Langlais, D. A. Reckhow, and D. R. Brink, Ozone in Water Treatment : Application and Engineering, Lewis (1991).
  12. O. Legrini, E. Oliveros, and A. M. Braun, Chem. Rev., 93, 671 (1993).
  13. R. Tosik and S. Wiktorowski, Ozone Sci. Eng., 23, 295 (2001).
  14. APHA, Standard Methods for the Examination of Water and Wastewater, 21st Ed, APHA (2009).
  15. H. Bader and J. Hoigne, Water Res., 15, 449 (1982).
  16. A. Majcherczyk, C. Johannes, and A. Huttermann, Appl. Microbiol. Biotechnol., 51, 267 (1999).
  17. T. D. Reynolds and P. A. Richards, Unit Operations and Processes in Environmental Engineering, PWS (1996).
  18. I. Talinli and G. K. Anderson, Water Res., 26, 107 (1992).
  19. E. Lee, H. Lee, Y. K. Kim, K. Sohn, and K. Lee, Int. J. Environ. Sci. Technol., 8, 381 (2011).
  20. C. G. Lee and M. C. Kim, Appl. Chem. Eng., 21, 610 (2010).