Preparation and Characterization of UV-cured Polyurethane Acrylate/ZnO Nanocomposite Films

자외선 경화형 폴리우레탄 아크릴레이트/ZnO 나노콤포지트 필름의 제조 및 특성 분석

  • Jeon, Gwonyoung (Department of Packaging, Yonsei University) ;
  • Park, Su-il (Department of Packaging, Yonsei University) ;
  • Seo, Jongchul (Department of Packaging, Yonsei University) ;
  • Seo, Kwangwon (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Han, Haksoo (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • You, Young Chul (R&D Center, Sukgyung AT Co.)
  • 전권영 (연세대학교 과학기술대학 패키징학과) ;
  • 박수일 (연세대학교 과학기술대학 패키징학과) ;
  • 서종철 (연세대학교 과학기술대학 패키징학과) ;
  • 서광원 (연세대학교 공과대학 화공생명공학과) ;
  • 한학수 (연세대학교 공과대학 화공생명공학과) ;
  • 유영철 ((주)석경에이티 부설연구소)
  • Received : 2011.07.14
  • Accepted : 2011.08.16
  • Published : 2011.12.10

Abstract

A series of polyurethane acrylate/ZnO (PUA/ZnO) nanocomposite films with different ZnO contents were successfully prepared via a UV-curing system. The synthesis and physical properties including morphological structure, thermal properties, barrier properties and optical properties, and antimicrobial properties were investigated as a function of ZnO concentration. FTIR and SEM results showed that these PUA/ZnO nanocomposite films did not have a strong interaction between PUA and ZnO, which may lead to no increase in thermal stability. By incorporating ZnO nanoparticles, the UV blocking and antibacterial properties increased as the content of ZnO increased. Specially, the oxygen permeability in composite films changed from $2005cc/m^2/day$ to $150cc/m^2/day$ by adding the ZnO nanoparticle, which indicates that the PUA/ZnO nanocomposite films can be applied as good barrier packaging materials. Physical properties of the UV-cured PUA/ZnO nanocomposite film are strongly dependent upon the dispersion state of ZnO nanoparticles and their morphology in the films.

Keywords

Polyurethane acrylate;ZnO nanoparticles;packaging material;PUA/ZnO nanocomposite film

Acknowledgement

Supported by : 한국연구재단, 한국에너지기술평가원(KETEP)

References

  1. K. Yukiyasu and M. W. Urban, Prog. Org. Coat., 35, 247 (1999). https://doi.org/10.1016/S0300-9440(98)00081-2
  2. J. Choi, J. Seo, B. S. Khan, E. S. Jang, and H. Han, Prog. Org. Coat., 71, 110 (2011). https://doi.org/10.1016/j.porgcoat.2011.01.005
  3. A. Srivastava, D. Agarwal, and S. Mistry, Pig. Resin Technol., 37, 217 (2008). https://doi.org/10.1108/03699420810887843
  4. E. Dzunuzovic, S. Tasic, B. Bozic, D. Babic, and D. Dunjic, Prog. Org. Coat., 52, 136 (2005). https://doi.org/10.1016/j.porgcoat.2004.10.003
  5. J. Seo, E. Jang, J. Song, S. Choi, S. B. Khan, and H. Han, J. App. Polym. Sci., 118, 2454 (2010).
  6. F. Wang, J. Q. Hu, and W. P. Tu, Prog. Org. Coat., 62, 245 (2008). https://doi.org/10.1016/j.porgcoat.2007.12.005
  7. X. Chen, Y. Hu, L. Song, and C. Jiao, Polym. Adv. Tech., 19, 322 (2008). https://doi.org/10.1002/pat.995
  8. S. Zhu and W. Shi, Polym. Int., 51, 223 (2002). https://doi.org/10.1002/pi.827
  9. E. M. Selke, J. D. Culter, and R. J. Hernandez, Plastics Packaging: Properties, Processing, Applications, and Regulations, 2nd ed., Hanser Gardner Publ., Ohio (2004).
  10. S. Dadbin, M. Noferesti, and M. Frounchi, Macromol. Symp., 274, 22 (2008).
  11. R. S. Mishra, A. K. Mishra, and K. V. S. N. Raju, Eur. Polym. J., 45, 960 (2009). https://doi.org/10.1016/j.eurpolymj.2008.11.023
  12. I. M. Joni, A. Purwanto, F. Iskandar, M. Hazata, and K. Okuyama, Chem. Eng. J., 155, 433 (2009). https://doi.org/10.1016/j.cej.2009.07.011
  13. Y. Y. Yu, W. C. Chien, and S. Y. Chen, Mat. Design, 31, 2061 (2010). https://doi.org/10.1016/j.matdes.2009.10.013
  14. J. Zheng, R. W. Siegel, and C. G. Toney, J. Polym. Sci. Polym. Phys., 41, 1033 (2003). https://doi.org/10.1002/polb.10452
  15. J. H. Li, R. Y. Hong, M. Y. Li, H. Z. Li, Y. Zheng, and J. Ding, Prog. Org. Coat., 64, 504 (2009). https://doi.org/10.1016/j.porgcoat.2008.08.013
  16. Y. Liu, L. He, A. Mustapha, H. Li, Z. Q. Hu, and M. Lin, J. App. Micro., 107, 1193 (2009). https://doi.org/10.1111/j.1365-2672.2009.04303.x
  17. J. Seo, J. Choi, E. S. Jang, K. Seo, and H. Han, Korean Chem. Eng. Res., 49, 75 (2011). https://doi.org/10.9713/kcer.2011.49.1.075
  18. V. Chaurasia, N. Chand, and S. K. Bajpai, J. Macromol. Sci. Part A, 47, 309 (2010). https://doi.org/10.1080/10601320903539207
  19. http://www.colorbondcolours.com/files/PermagardTestingProcedure-Certificate.
  20. N. Lu, X. Lu, X. Jin, and C. Lu, Polym. Int., 56, 138 (2007). https://doi.org/10.1002/pi.2126
  21. R. Y. Hong, L. L. Chen, J. Li, H. Li, Y. Zheng, and J. Ding, Polym. Adv. Tech., 18, 901 (2007). https://doi.org/10.1002/pat.926
  22. D. W. Chae and B. C. Kim, Polym. Adv. Tech., 16, 846 (2005). https://doi.org/10.1002/pat.673
  23. F. J. Carrion, J. Sanes, and M. Bermudez, Wear, 262, 1504 (2007). https://doi.org/10.1016/j.wear.2007.01.016
  24. A. Nasu and Y. Otsubo, J. Coll. Int. Sci., 310, 617 (2007). https://doi.org/10.1016/j.jcis.2007.02.012
  25. T. Iwasaki, M. Satoh, and T. Masuda, J. Mat. Sci., 35, 4025 (2000). https://doi.org/10.1023/A:1004826002503
  26. S. Hess, M. M. Demir, V. Yakutkin, S. Baluschev, and G. Wegner, Macromol. Rap. Comm., 30, 394 (2009). https://doi.org/10.1002/marc.200800732
  27. A. Ammala, S. T. Pas, K. E. Lawrence, R. Stark, R. I. Webb, and A. J. Hill, J. Mat. Chem., 18, 911 (2008). https://doi.org/10.1039/b712875d
  28. J. T. Yeh, C. J. Chang, F. C. Tsai, K. N. Chen, and K. S. Huang, App. Clay Sci., 45, 1 (2009). https://doi.org/10.1016/j.clay.2008.04.005
  29. E. Tang, H. Liu, L. Sun, E. Zheng, and G. Cheng, Eur. Polym. J., 43, 4210 (2007). https://doi.org/10.1016/j.eurpolymj.2007.05.015
  30. Y. Liu, C. Lu, M. Li, J. Liu, J. Zhang, and B. Yang, Thin Solid Films, 516, 8507 (2008). https://doi.org/10.1016/j.tsf.2008.05.005