A Study on the Oxygen Behavior Characterization of V2O5/TiO2 Catalysts by Ball Milling

V2O5/TiO2 촉매의 Ball Milling에 따른 산소 거동 특성 연구

  • Kwon, Dong Wook (Department of Environmental Energy Systems Engineering, Graduate School of Kyonggi University) ;
  • Park, Kwang Hee (Department of Environmental Energy Systems Engineering, Graduate School of Kyonggi University) ;
  • Lee, Sang Moon (Department of Environmental Energy Systems Engineering, Graduate School of Kyonggi University) ;
  • Jang, Du Hun (Department of Environmental Energy Systems Engineering, Graduate School of Kyonggi University) ;
  • Hong, Sung Chang (Department of Environmental Energy Systems Engineering, Graduate School of Kyonggi University)
  • 권동욱 (경기대학교 일반대학원 환경에너지시스템공학과) ;
  • 박광희 (경기대학교 일반대학원 환경에너지시스템공학과) ;
  • 이상문 (경기대학교 일반대학원 환경에너지시스템공학과) ;
  • 장두훈 (경기대학교 일반대학원 환경에너지시스템공학과) ;
  • 홍성창 (경기대학교 일반대학원 환경에너지시스템공학과)
  • Received : 2011.07.11
  • Accepted : 2011.09.06
  • Published : 2011.12.10

Abstract

We study on the oxygen behavior of $V_2O_5/TiO_2$ catalysts in the $NH_3$-selective catalytic reduction (SCR) prepared by the ball milling processing. There are not any changes in crystal structure and surface area of the $TiO_2$ catalyst by ball milling, but the maximal reduction temperature decreased in $H_2$-temperature programmed reduction (TPR) analysis. Experimental observations with various concentrations of oxygen indicate that all catalysts showed a very low NOx conversion rate in the absence of oxygen and the reactivity of ball milled catalyst higher depending on the oxygen. It is occurred because the degree of participation of atmospheric oxygen and lattice oxygen is great than that of the not-milled catalyst.

Keywords

selective catalytic reduction;catalyst;ball milling;NOx removal

Acknowledgement

Grant : 고활성 탈질촉매 공정기술 개발

Supported by : 에너지관리공단

References

  1. R. M. Heck, Catal. Today., 53, 519 (1999). https://doi.org/10.1016/S0920-5861(99)00139-X
  2. P.-W. Seo, J.-Y. Lee, K.-S. Shim, S.-H. Hong, S.-C. Hong, and S.-I. Hong, J. Hazard. Mater., 165, 39 (2009). https://doi.org/10.1016/j.jhazmat.2008.09.119
  3. S. Begin-Colin, F. Wolf, and G. Le Caer, J. Phys. III France, 7, 473 (1997). https://doi.org/10.1051/jp3:1997135
  4. D. T. On, M. P. Kapoor, E. Thibault, J. E. Gallot, G. Lemay, and S. Kaliaguine, Microporous Mesoporous Mater., 20, 107 (1998). https://doi.org/10.1016/S1387-1811(97)00002-4
  5. W. Oelerich, T. Klassen, and R. Bormann, J. Alloys Compd., 322, L5 (2001). https://doi.org/10.1016/S0925-8388(01)01173-2
  6. J. Hu, H. Qin, Z. Sui, and H. Lu, Mater. Lett., 53, 421 (2002). https://doi.org/10.1016/S0167-577X(01)00518-3
  7. S. Coste, G. Bertrand, C. Coddet, E. Gaffet, H. Hahn, and H. Sieger, J. Alloys Compd., 434, 489 (2007).
  8. V. A. Zazhigalov, J. Haber, J. Stoch, A. I. Kharlamov, L. V. Bogutskaya, I. V. Bacherikova, and A. Kowal, Solid State Ionics, 101, 1257 (1997).
  9. A. Miyamoto, K. Kobayashi, M. Inomata, and Y. Murakami, J. Phys. Chem., 86, 2945 (1982). https://doi.org/10.1021/j100212a027
  10. J. Haber and M. Witcko, J. Catal., 216, 416 (2003). https://doi.org/10.1016/S0021-9517(02)00037-4
  11. M. Koebel, G. Madia, F. Raimondi, and A. Wokaun, J. Catal., 209, 159 (2002). https://doi.org/10.1006/jcat.2002.3624
  12. Qi. Gonshin and R. T. Yang, J. Catal., 217, 434 (2003). https://doi.org/10.1016/S0021-9517(03)00081-2
  13. G. S. Wong, D. D. Kragten, and J. M. Vohs, Surf. Sci., 452, L293 (2000). https://doi.org/10.1016/S0039-6028(00)00396-4
  14. W. C. Wong, Ph. D Dissertation, University of California (1982).
  15. A. Sorrentino, S. Rega, D. Sannini, A. Nagliano, P. Ciambeli, and E. Santacesaria, Appl. Catal. A, 209, 45 (2001). https://doi.org/10.1016/S0926-860X(00)00742-0