The Efficacy of β-cyclodextrin/polyethyleneimine/silk Fibroin Hydrogel in Healing Burnt Wound

사이클로덱스트린/폴리에틸렌이민/실크 피브로인 수화겔의 화상치유효능

  • Seo, Seung Ree (Division of Biotechnology & Bioengineering and Institute of Bioscience and Biotechnology, Kangwon National University) ;
  • Lee, Mi Sun (Division of Biotechnology & Bioengineering and Institute of Bioscience and Biotechnology, Kangwon National University) ;
  • Kim, Jin-Chul (Division of Biotechnology & Bioengineering and Institute of Bioscience and Biotechnology, Kangwon National University)
  • 서승리 (강원대학교 바이오산업공학부 생물소재공학전공) ;
  • 이미선 (강원대학교 바이오산업공학부 생물소재공학전공) ;
  • 김진철 (강원대학교 바이오산업공학부 생물소재공학전공)
  • Received : 2011.05.26
  • Accepted : 2011.08.22
  • Published : 2011.12.10

Abstract

In this study, we investigated the efficacy of ${\beta}$-cyclodextrin (${\beta}CD$) hydrorogel containing silk fibroin (SF) on healing burnt wound. Tosyl ${\beta}CD$ was conjugated to polyethyleneimine (PEI) using epichlorohydrin (EPI) as a cross-linker. The ${\beta}CD/PEI/SF$ hydrogel was applied on the back of mouse and then the efficacy of hydrogel was compared with both positive control group and negative control group. There was no wound healing efficacy showed neither in the drug loaded ${\beta}CD/PEI/SF$ hydrogel group nor in the drug unloaded ${\beta}CD/PEI/SF$ hydrogel group. On the other hand, in the positive control group, a significant reduction of the wound size after the usage of OTC hydrorogel was obtained. The burn-healing histological result showed a similar phenomenon. After hematoxylin-eosin staining the skin induced by burning, and the epithelial growth observed in the dermis, the efficacy of ${\beta}CD/PEI/SF$ hydrogel in healing burnt wound could not be clearly identified.

Keywords

${\beta}$-cyclodextrin;silk fibroin;burn;hydrogel;wound healing

Acknowledgement

Supported by : 강원대학교

References

  1. Y. H. Choi, M. G. Kim, D. H. Ahn, S. J. Cho, S. H. Hong, J. Y. Lee, J. W. Lee, and H. S. Kim, J. Korean Surg. Soc., 79, 1 (2010). https://doi.org/10.4174/jkss.2010.79.1.1
  2. A. K. Azad, N. Sermsintham, S. Chandrkrachang, and W. f. Stevens, J. Biomed. Mater. Res. B., 69, 216 (2004).
  3. Y. C. Kim, J. C. Shin, and Y. S. Kim, Yonsei Med J., 37, 181 (1996). https://doi.org/10.3349/ymj.1996.37.3.181
  4. I. Ono, H. Gunji, J. Z. Zhang, K. Maruyama, and F. Kaneko, Burns., 5, 352 (1995).
  5. D. M. Simpson and R. Ross, J. Clin. Invest., 51, 2009 (1972). https://doi.org/10.1172/JCI107007
  6. Y. Y. Liu, X. D. Fan, H. Hu, and Z. H. Tang, Macromol Biosci., 4, 729 (2004). https://doi.org/10.1002/mabi.200400037
  7. W. H. Park, L. Jeong, D. I. Yoo, and S. Hudson, Polymer., 45, 7151 (2004). https://doi.org/10.1016/j.polymer.2004.08.045
  8. K. E. Park, S. Y. Jung, S. J. Lee, B. M. Min, and W. H. Park, Int. J. Biol. Macromol., 38, 165 (2006). https://doi.org/10.1016/j.ijbiomac.2006.03.003
  9. X. Yang and J. C. Kim, Int. J. Biol. Macromol., 48, 661 (2011). https://doi.org/10.1016/j.ijbiomac.2011.02.007
  10. S. W. Kim, Y. H. Bae, and T. Okano, Pharm Res., 9, 283 (1992). https://doi.org/10.1023/A:1015887213431
  11. C. S. Sobral, A. Gragnani, J. Morgan, and L. M. Ferreira, Burns., 33, 613 (2007). https://doi.org/10.1016/j.burns.2006.08.021
  12. T. C. Allen, Laboratory methods in histotechnology. E. B. Prophet, B. Mills, J. B. Ariington, L. H. Sobin, 1, 53, Armed Forces Institute of Pathology, Washington DC, (1992).
  13. B. C. Kang, J. S. Nam, J. H. Che, S. M. Lee, J. M. Yang, H. M. Lee, J. H. Park, D. H. Song, S. H. Yoo, and Y. S. Lee, Korean J. Toxicol., 13, 149 (1997).
  14. S. E. Bae, T. K. Oh, and S. C. Park, Korean J. Toxicol., 13, 161 (1997).
  15. Y. M. Sun, C. C. Chang, W. F. Huang, and H. C. Liang, J. Control Release., 47, 247 (1997). https://doi.org/10.1016/S0168-3659(97)01649-0