Green Catalysts for Isobutane Alkylation Process

이소부탄 알킬레이션 공정을 위한 친환경 촉매

  • Yoo, Kye Sang (Department of Chemical Engineering, Seoul National University of Science & Technology)
  • 유계상 (서울과학기술대학교 화학공학과)
  • Received : 2011.11.10
  • Published : 2011.12.10

Abstract

As a result of increasing environmental concerns related to air quality and maintenance of automobiles, the alkylation of isobutane with olefins has become an even more important process for production of high quality gasoline. However, the widespread use of the alkylation process is limited by the polluting and corrosive liquid acid catalysts (HF and $H_2SO_4$) currently used in industry. For the reason, a large number of solid catalysts, especially zeolites, have been studied as an environmental friendly catalyst in this process. Recently, mesoporous solid acids and ionic liquids have been investigated as a green catalyst. In this review, the research of environmental friendly catalysts for an isobutane alkylation is summarized.

Keywords

isobutane alkylation;zeolites;ionic liquids;mesoporous solid acids

References

  1. L. F. Albright, Alkylations Industrial. In Encyclopedia of Catalysis, ed. I. T. Horvath, 1, 191, John Wiley and Sons, New York (2003).
  2. M. Radler, Oil Gas J., 95, 41 (1997).
  3. EPA, Clean Air Act Amendments of 1990. Detailed Summary of Titles (1990)
  4. A. Corma and A. Martinez, Catal. Rev. Sci. Eng., 35, 484 (1993).
  5. W. R. Hartley, A. J. Englande Jr, and D. J. Harrington, Water Sci. Technol., 39, 305 (1999). https://doi.org/10.1016/S0273-1223(99)00290-5
  6. N. Y. Kado, P. A. Kuzmicky, G. Loarca-Pina, and M. M. Mumtaz, Mutation Res., 412, 131 (1998). https://doi.org/10.1016/S1383-5718(97)00179-4
  7. S. Vainiotalo, K. Pakari, and A. Aitio, Int. Arch. Environ. Occup. Health., 71, 391 (1998). https://doi.org/10.1007/s004200050297
  8. G. H. Unzelman, Fuel Reformul., 11, 37 (1993).
  9. L. F. Albright and K. V. Wood, Ind. Eng. Chem. Res., 36, 2110 (1997). https://doi.org/10.1021/ie960265f
  10. J. Scherzer, Catal. Rev. Sci. Eng., 31, 215 (1989). https://doi.org/10.1080/01614948909349934
  11. M. Radler, Oil Gas J., 95, 57 (1997).
  12. F. Cardona, N. S. Gnep, M. Guisnet, G. Szabo, and P. Nascimento, Appl. Catal., A, 128, 243 (1995). https://doi.org/10.1016/0926-860X(95)00079-8
  13. M. F. Simpson, J. Wei, and S. Sundaresan, Ind. Eng. Chem. Res., 35, 3861 (1996). https://doi.org/10.1021/ie960172y
  14. A. Corma, A. Martinez, and C. Martinez, J. Catal., 146, 185 (1994). https://doi.org/10.1016/0021-9517(94)90021-3
  15. C. Flego, I. Kiricsi, W. O. Parker, and M. G. Clerici, Appl. Catal., A, 124, 107 (1995). https://doi.org/10.1016/0926-860X(94)00268-1
  16. C. Flego, L. Galasso, I. Kiricsi, and M. G. Clerici, Stud. Surf. Sci. Catal., 88, 585 (1994).
  17. J. Weitkamp, Stud. Surf. Sci. Catal., 5, 65 (1980).
  18. A. Corma, A. Martinez, and C. Martinez, Appl. Catal., A, 134, 169 (1996). https://doi.org/10.1016/0926-860X(95)00228-6
  19. M. Stocker, H. Mostad, and T. Rorvik, Catal. Lett., 28, 203 (1994). https://doi.org/10.1007/BF00806049
  20. M. Simpson, J. Wei, and S. Sundaresan, Ind. Eng. Chem. Res., 35, 3861 (1996). https://doi.org/10.1021/ie960172y
  21. T. Rorvik, H. Mostad, O. H. Ellestad, and M. Stocker, Appl. Catal., A, 137, 235 (1996). https://doi.org/10.1016/0926-860X(95)00282-0
  22. K. P. De Jong, C. M. A. M. Mesters, D. G. R. Peferoen, P. T. M. Van Brugge, and C. De Groot, Chem. Eng. Sci., 51, 2053 (1996). https://doi.org/10.1016/0009-2509(96)00062-0
  23. C. A. Querini and E. Roa, Appl. Catal., A, 163, 199 (1997). https://doi.org/10.1016/S0926-860X(97)00144-0
  24. A. Feller, A. Guzman, I. Zuazo, and J. A. Lercher, J. Catal., 224, 80 (2004). https://doi.org/10.1016/j.jcat.2004.02.019
  25. R. Josl, R. Klingmann, Y. Traa, R. Gläser, and J. Weitkamp, Catal. Commun., 5, 239 (2004). https://doi.org/10.1016/j.catcom.2004.02.005
  26. C. Sievers, I. Zuazo, A. Guzman, R. Olindo, H. Syska, and J. A. Lercher, J. Catal., 246, 315 (2007). https://doi.org/10.1016/j.jcat.2006.11.015
  27. A. Guzman, I. Zuazo, A. Feller, R. Olindo, C. Sievers, and J. A. Lercher, Micropor. Mesopor. Mater., 97, 49 (2006). https://doi.org/10.1016/j.micromeso.2006.08.006
  28. C. Sievers, J. S. Liebert, M. M. Stratmann, R. Olindo, and J. A. Lercher, Appl. Catal., A, 336, 89 (2008). https://doi.org/10.1016/j.apcata.2007.09.039
  29. A. Corma, A. Martinez, and C. Martinez, Catal. Lett., 28, 187 (1994). https://doi.org/10.1007/BF00806048
  30. S. Unverricht, S. Ernst, and J. Weitkamp, Stud. Surf. Sci. Catal., 84, 1693 (1994).
  31. K. Yoo and P. G. Smirniotis, Appl. Catal., A, 227, 171 (2002). https://doi.org/10.1016/S0926-860X(01)00931-0
  32. A. Corma, V. Gomez, and A. Martinez, Appl. Catal., A, 119, 83 (1994). https://doi.org/10.1016/0926-860X(94)85026-7
  33. G. S. Nivarthy, Y. He, K. Seshan, and J. A. Lercher, J. Catal., 176, 192 (1998). https://doi.org/10.1006/jcat.1998.2023
  34. R. Loenders, P. A. Jacobs, and J. A. Martens, J. Catal., 176, 545 (1998). https://doi.org/10.1006/jcat.1998.2045
  35. A. Corma, A. Martinez, P. A. Arroyo, J. L. F. Monteiro, and E. F. Sousa-Aguiar, Appl. Catal., A, 142, 139 (1996). https://doi.org/10.1016/0926-860X(96)00014-2
  36. G. S. Nivarthy, K. Seshan, and J. A. Lercher, Micropor. Mesopor. Mater., 22, 379 (1998). https://doi.org/10.1016/S1387-1811(98)00092-4
  37. K. Yoo, E. C. Burckle, and P. G. Smirniotis, Catal. Lett., 74, 85 (2001). https://doi.org/10.1023/A:1016665611331
  38. J. Weitkamp and Y. Traa, Catal. Today, 49, 193 (1999). https://doi.org/10.1016/S0920-5861(98)00424-6
  39. J. Weitkamp, Proc. 5th Intern. Zeolite Confer., eds. L. V. C. Rees, 858, London, United Kingdom (1980).
  40. J. Weitkamp and S. Ernst, Proc. 13th World Pet. Congr., 3, 315, New York (1992).
  41. A. E. Koklin, V. M. K. Chan, V. B. Kazanskii, and V. I. Bogdan, Kinet. Catal., 51, 410 (2010). https://doi.org/10.1134/S0023158410030146
  42. D. M. Ginosar, D. N. Thompson, and K. C. Burch, Ind. Eng. Chem. Res., 45, 567 (2006). https://doi.org/10.1021/ie050776e
  43. V. I. Bogdan and V. B. Kazanskii, Kinet. Catal., 46, 834 (2005). https://doi.org/10.1007/s10975-005-0144-2
  44. D. N. Thompson, D. M. Ginosar, and K. C. Burch, Ind. Eng. Chem. Res., 44, 4534 (2005). https://doi.org/10.1021/ie050176f
  45. D. N. Thompson, D. M. Ginosar, and K. C. Burch, Appl. Catal., A, 279, 109 (2005). https://doi.org/10.1016/j.apcata.2004.10.018
  46. G. M. Santana and A. Akgerman, Ind. Eng. Chem. Res., 40, 3879 (2001). https://doi.org/10.1021/ie000501t
  47. K. Yoo and P. G. Smirniotis, Ind. Eng. Chem. Res., 44, 85 (2005). https://doi.org/10.1021/ie040058c
  48. T. Blasco, A. Corma, A. Martínez, and P. Martínez-Escolano, J. Catal., 177, 306 (1998). https://doi.org/10.1006/jcat.1998.2105
  49. Z. Zhang, Y. Han, F. S. Xiao, S. Qiu, L. Zhu, R. Wang, Y. Yu, Z. Zhang, B. Zou, Y. Wang, H. Sun, D. Zhao, and Y. Wei, J. Am. Chem. Soc., 123, 5014 (2001). https://doi.org/10.1021/ja004138t
  50. W. Dong, and B. H. Chen, Petrochem. Technol., 31, 84 (2002).
  51. E. I. Basaldella, M. S. Legnoverde, I. Jimenez-Morales, E. Rodriguez-Castellon, B. O. Dalla Costa, and C. A. Querini, Adsorption., 17, 631 (2011). https://doi.org/10.1007/s10450-011-9353-3
  52. W. Shen, D. Dubé, and S. Kaliaguine, Catal. Commun., 10, 291 (2008). https://doi.org/10.1016/j.catcom.2008.09.016
  53. W. Shen, Y. Gu, H. Xu, R. Che, D. Dube, and S. Kaliaguine, Appl. Catal., A, 377, 1 (2010). https://doi.org/10.1016/j.apcata.2009.12.012
  54. W. Shen, Y. Gu, H. Xu, R. Che, D. Dubé, and S. Kaliaguine, Ind. Eng. Chem. Res., 49, 7201 (2010). https://doi.org/10.1021/ie1001873
  55. T. Welton, Chem. Rev., 99, 2071 (1999). https://doi.org/10.1021/cr980032t
  56. J. Dupont, R. F. de Souza, and P. A. Z. Suarez, Chem. Rev., 102, 3667 (2002). https://doi.org/10.1021/cr010338r
  57. D. B. Zhao, M. Wu, Y. Kou, and E. Z. Min, Catal. Today., 74, 157 (2002). https://doi.org/10.1016/S0920-5861(01)00541-7
  58. T. Welton, Coord. Chem. Rev., 248, 2459 (2004). https://doi.org/10.1016/j.ccr.2004.04.015
  59. V. I. Parvulescu and C. Hardacre, Chem. Rev., 107, 2615 (2007). https://doi.org/10.1021/cr050948h
  60. P. Wasserscheid and T. Welton, Ionic Liquids in Synthesis, Wiley-VCH, Weinheim (2008).
  61. K. S. Yoo, V. V. Namboodiri, R. S. Varma, and P. G. Smirniotis, J. Catal., 222, 511 (2004). https://doi.org/10.1016/j.jcat.2003.11.018
  62. Z. C. Liu, Y. H. Zhang, C. P. Huang, J. S. Gao, and C. M. Xu, Chin. J. Catal., 25, 693 (2004).
  63. C. P. Huang, Z. C. Liu, C. M. Xu, B. H. Chen, and Y. F. Liu, Appl. Catal., A, 277, 41 (2004). https://doi.org/10.1016/j.apcata.2004.08.019
  64. P. Wang, D. X. Wang, J. S. Gao, K. Dong, C. M. Xu, and J. J. Liu, Chem. J. Chin. Univ., 27, 1505 (2006).
  65. A. S. Berenblyum, E. A. Katsman, and Y. Z. Karasev, Appl. Catal., A, 315, 128 (2006). https://doi.org/10.1016/j.apcata.2006.09.013
  66. J. Zhang, C. Huang, B. Chen, P. Ren, and M. Pu, J. Catal., 249, 261 (2007). https://doi.org/10.1016/j.jcat.2007.04.019
  67. S. Aschauer, L. Schilder, W. Korth, S. Fritschi, and A. Jess, Catal. Lett., 141, 1405 (2011). https://doi.org/10.1007/s10562-011-0675-2
  68. T. L. T Bui, W. Korth, S. Aschauerb, and A. Jess, Green Chem., 11, 1961 (2009). https://doi.org/10.1039/b913872b
  69. S. Tang, A. Scurto, and B. Subramaniam, J. Catal., 268, 243 (2009). https://doi.org/10.1016/j.jcat.2009.09.022
  70. B. Sarup, S. I. Hommeltoft, M. Sylvest-Johansen, and P. Sugaard-Andersen, Proc. DGMK Conf. Catal. on Solid Acids and Bases, eds. J. Weitkamp and B. LuEcke, Berlin, Germany (1996).
  71. Anonymous, Oil Gas J., 94, 69 (1996).
  72. A. K. Rhodes, Oil Gas J., 92, 49 (1994).
  73. P. Rao and S. R. Vatcha, Oil Gas J., 94, 56 (1996).