Effect of pH on Growth and Ethanol Production of Clostridium ljungdahlii

Clostridium ljungdahlii 성장 및 에탄올 생산에 pH가 미치는 영향

  • Park, So Jung (Department of Chemical Engineering, Hankyong National University) ;
  • Hong, Sung-Gu (Department of Bioresources & Rural Systems Engineering, Hankyong National University) ;
  • Kang, Kwon-Kyoo (Department of Horticultural Science, Hankyong National University) ;
  • Kim, Young-Kee (Department of Chemical Engineering, Hankyong National University)
  • 박소정 (한경대학교 화학공학과) ;
  • 홍성구 (한경대학교 지역자원시스템공학과) ;
  • 강권규 (한경대학교 원예학과) ;
  • 김영기 (한경대학교 화학공학과)
  • Received : 2011.08.19
  • Accepted : 2011.09.20
  • Published : 2011.10.10


In this study, we developed a bioprocess using Clostridium ljungdahlii as a biological catalyst to produce bio-ethanol, and the effect of pH on microbial growth and ethanol production was investigated. From the results of fermentation at various initial pH condition without pH control, pH of fermentation broth decreased to 4.5 within 24 h due to accumulation of by-product acetic acid and both microbial growth and ethanol production were stopped. The experimental result of initial pH 8 showed the highest microbial growth and ethanol production (0.53 g/L), since the pH drop was relatively slow. From the experiment of pH 7 maintained fermentation using pH controllable bioreactor, the maximum cell dry weight of 1.65 g/L and the maximum ethanol concentration of 1.43 g/L were obtained within 24 h. In conclusion, the C. ljungdahlii growth was enhanced by pH maintenance of neutral range, and the ethanol production was also enhanced based on the growth-associated ethanol production characteristics of C. ljungdahlii.


bioethanol;Clostridium ljungdahlii;synthesis gas;fermentation;bioreactor


Supported by : 한국에너지기술평가원(KETEP), 한국연구재단


  1. Z. Alimuddin, B. Z. Alauddin, P. Lahijani, M. Mohammadi, and A. R. Mohamed, Renew. Sus. Energy Rev., 14, 2852 (2010). https://doi.org/10.1016/j.rser.2010.07.026
  2. D. K. Kundiyana, R. L. Huhnke, P. Maddipati, H. K. Atiyeh, and M. R. Wilkins, Bioresour. Technol., 101, 9673 (2010). https://doi.org/10.1016/j.biortech.2010.07.054
  3. K. R. Szulczyk, B. A. McCarl, and G. Cornforth, Renew. Sus. Energy Rev., 14, 394 (2010). https://doi.org/10.1016/j.rser.2009.07.007
  4. J.-J. Ko, S.-L. Yun, S.-W. Kang, and S.-K. Kim, Journal of the Korea Organic Resource Recycling Association, 16, 79 (2008).
  5. Y. E. Na, J. Korea Organic. Resource Recycling Association, 18, 13 (2010).
  6. P. C. Munasinghe and S. K. Khanal, Biosour. Technol., 101, 5013 (2010). https://doi.org/10.1016/j.biortech.2009.12.098
  7. S.-M. Jeong, G.-S. Jin, Y.-J. Kim, S.-J. Kim, and D.-H. Lee, J. Korea Society of Waste Management, 26, 419 (2009).
  8. Y. Sun and J. Cheng, Bioresour. Technol., 83, 1 (2002). https://doi.org/10.1016/S0960-8524(01)00212-7
  9. Y.-S. Kim, Mokchae Konghak, 37, 274 (2009).
  10. L. Olsson and B. Hahn-Hagerdal, Enzyme Microb. Technol., 18, 312 (1996). https://doi.org/10.1016/0141-0229(95)00157-3
  11. A. L. V. Perales, C. R. Valle, P. Ollero, and A. Gomez-Barea, Energy, 36, 4097 (2011). https://doi.org/10.1016/j.energy.2011.04.037
  12. R. P. Datar, R. M. Shenkman, B. G. Cateni, R. L. Huhnke, and R. S. Lewis, Biotechnol. Bioeng., 86, 587 (2004). https://doi.org/10.1002/bit.20071
  13. A. M. Henstra, J. Sipma, A. Ruinzema, and A. JM Stams, Curr. Opin. Biotechnol., 18, 200 (2007). https://doi.org/10.1016/j.copbio.2007.03.008
  14. H. Younesi, G. Najafpour, and A. R. Mohamed, Biochem. Eng. J., 27, 110 (2005). https://doi.org/10.1016/j.bej.2005.08.015
  15. M. D. Bredwell, P. Srivastava, and R. M. Worden, Biotechnol. Prog., 15, 834 (1999). https://doi.org/10.1021/bp990108m
  16. G. Najafpour and H. Younsei, Enzyme Microb. Technol., 38, 223 (2006). https://doi.org/10.1016/j.enzmictec.2005.06.008
  17. J. L. Cotter, M. S. Chinn, and A. M. Grunden, Enzyme Microb. Technol., 44, 281 (2009). https://doi.org/10.1016/j.enzmictec.2008.11.002