Low-voltage Pentacene Field-Effect Transistors Based on P(S-r-BCB-r-MMA) Gate Dielectrics

P(S-r-BCB-r-MMA) 게이트 절연체를 이용한 저전압 구동용 펜타센 유기박막트랜지스터

  • Koo, Song Hee (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Russell, Thomas P. (Polymer Science and Engineering Department, University of Massachusetts) ;
  • Hawker, Craig J. (Materials Research Laboratory, University of California) ;
  • Ryu, Du Yeol (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Lee, Hwa Sung (Department of Chemical Engineering, Hanbat National University) ;
  • Cho, Jeong Ho (Department of Organic Materials and Fiber Engineering, Soongsil University)
  • 구송희 (숭실대학교 유기신소재.파이버공학과) ;
  • ;
  • ;
  • 류두열 (연세대학교 화학공학과) ;
  • 이화성 (한밭대학교 화학공학과) ;
  • 조정호 (숭실대학교 유기신소재.파이버공학과)
  • Received : 2011.08.12
  • Accepted : 2011.09.19
  • Published : 2011.10.10

Abstract

One of the key issues in the research of organic field-effect transistors (OFETs) is the low-voltage operation. To address this issue, we synthesized poly(styrene-r-benzocyclobutene-r-methyl methacrylate) (P(S-r-BCB-r-MMA)) as a thermally cross-linkable gate dielectrics. The P(S-r-BCB-r-MMA) showed high quality dielectric properties due to the negligible volume change during the cross-linking. The pentacene FETs based on the 34 nm-thick P(S-r-BCB-r-MMA) gate dielectrics operate below 5 V. The P(S-r-BCB-r-MMA) gate dielectrics yielded high device performance, i.e. a field-effect mobility of $0.25cm^2/Vs$, a threshold voltage of -2 V, an sub-threshold slope of 400 mV/decade, and an on/off current ratio of ${\sim}10^5$. The thermally cross-linkable P(S-r-BCB-r-MMA) will provide an attractive candidate for solution-processable gate dielectrics for low-voltage OFETs.

Keywords

P(S-r-BCB-r-MMA);organic field-effect transistors;pentacene;low voltage operation;stability

Acknowledgement

Grant : 컨버전스 기반의 신재생에너지원 개발을 위한 원천융합기술 인력양성

Supported by : 한국산업기술평가관리원

References

  1. M. J. Malachowski and J. Zmija, Opto-Electro. Rev., 18, 121 (2010). https://doi.org/10.2478/s11772-010-0008-9
  2. K. A. Singh, T. Young, R. D. McCullough, T. Kowalewski, and L. M. Porter, Adv. Funct. Mater., 20, 2216 (2010). https://doi.org/10.1002/adfm.201000346
  3. B. Sun and H. Sirringhaus, J. Am. Chem. Soc., 128, 16231 (2006). https://doi.org/10.1021/ja065242z
  4. Y. D. Park, S. G. Lee, H. S. Lee, D. Kwak, D. H. Lee, and K. Cho, J. Mater. Chem., 21, 2338 (2011). https://doi.org/10.1039/c0jm03114c
  5. B. Brauer, A. Virkar, S. C. B. Mannsfeld, D. P. Bernstein, R. Kukreja, K. W. Chou, T. Tyliszczak, Z. Bao, and Y. Acremann, Chem. Mater., 22, 3693 (2010). https://doi.org/10.1021/cm100487j
  6. H. S. Lee, D. H. Kim, J. H. Cho, Y. D. Park, J. S. Kim, and K. Cho, Adv. Funct. Mater., 16, 1859 (2006). https://doi.org/10.1002/adfm.200500854
  7. Y. Yun, C. Pearson, and M. C. Petty, J. Appl. Phys., 105, 034508 (2009). https://doi.org/10.1063/1.3075616
  8. N. G. Martinelli, M. Savini, L. Muccioli, Y. Olivier, F. Castet, C. Zannoni, D. Beljonne, and J. Cornil, Adv. Funct. Mater., 19, 3254 (2009). https://doi.org/10.1002/adfm.200901077
  9. M. P. Walser, W. L. Kalb, T. Mathis, T. J. Brenner, and B. Batlogg, Appl. Phys. Lett., 94, 053303 (2009). https://doi.org/10.1063/1.3077192
  10. X. Cheng, M. Caironi, Y. Y. Noh, J. Wang, C. Newman, H. Yan, A. Facchetti, and H. Sirringhaus, Chem. Mater., 22, 1559 (2010). https://doi.org/10.1021/cm902929b
  11. Y. Jang, D. H. Kim, Y. D. Park, J. H. Cho, M. Hwang, and K. Cho, Appl. Phys. Lett., 88, 072101 (2006). https://doi.org/10.1063/1.2173633
  12. H. S. Lee, D. H. Kim, J. H. Cho, M. Hwang, Y. Jang, and K. Cho, J. Am. Chem. Soc., 130, 10556 (2008). https://doi.org/10.1021/ja800142t