Electrochemical Properties and Fabrication of Conjugated System Conducting Oligomer Self-assembled Monolayer

공액구조 전도성 올리고머 자기조립단분자막의 제작 및 전기화학적 특성

  • Min, Hyun Sik (Department of Chemistry & Biomolecular Engineering, Sogang University) ;
  • Lee, Tae Yeon (Department of Chemistry & Biomolecular Engineering, Sogang University) ;
  • Oh, Se Young (Department of Chemistry & Biomolecular Engineering, Sogang University)
  • 민현식 (서강대학교 화공생명공학과) ;
  • 이태연 (서강대학교 화공생명공학과) ;
  • 오세용 (서강대학교 화공생명공학과)
  • Received : 2011.08.10
  • Accepted : 2011.09.15
  • Published : 2011.10.10

Abstract

We have synthesized a high electrically conductive 4-(2-(4-(acetylthio)phenyl)ethynyl)benzoic acid (APBA) with a conjugated aromatic structure as a bio fix linker, and then fabricated APBA self-assembled monolayer (SAM) with a self-assembly technique. The structure of the prepared APBA SAM was studied and electrochemical properties of APBA SAM immobilized with a ferrocene molecule were investigated. Also, we have examined the molecular orientation and oxidation-reduction redox characteristics of the mixed SAM consisting of APBA and butanethiol (BT) with a X-ray photo electron spectroscopy (XPS) and cyclicvoltammetry, respectively. Electrochemical activity of the mixed SAM was increased with increasing the mixed time. Especially, the maximum redox current was obtained at a mixed time of 36 hrs.

Keywords

APBA SAM;electrochemical activity;molecular orientation;redox current;mixed SAM

Acknowledgement

Supported by : 한국에너지기술평가원(KETEP), 한국연구재단

References

  1. J. C. Love, L. A. E stroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, Chem. Rev., 105, 103 (2005).
  2. F.-R. F. Fan, J. Yang, L. Cai, D. W. Price Jr., S. M. Dirk, D. V. Kosynkin, Y. Yao, A. M. Rawlett, J. M. Tour, and A. Bard, J. Am. Chem. Soc., 124, 5550 (2002). https://doi.org/10.1021/ja017706t
  3. L. A. Bumm, J. J. Arnold, M. T. Cygan, T. D. Dunbar, T. P. Burgin, L. Jone II, D. L. Allera, J. M. Tour, and P. S. Weiss, Science, 271, 1705 (1996). https://doi.org/10.1126/science.271.5256.1705
  4. J. G. Kushmerick, J. Naciri, J. C. Yang, and R. Shashidhar, Nano Lett., 3, 897 (2003). https://doi.org/10.1021/nl034201n
  5. D. J. Wold and C. D. Frisbie, J. Am. Chem. Soc., 122, 2970 (2000). https://doi.org/10.1021/ja994468h
  6. D. J. Wold and C. D. Frisbie, J. Am. Chem. Soc., 123, 5549 (2001). https://doi.org/10.1021/ja0101532
  7. D. J. Wold, R. Haag, M. A. Rampi, and C. D. Frisbie, J. Phys. Chem. B., 106, 2813 (2002). https://doi.org/10.1021/jp013476t
  8. S. Y. Oh, H. S. Jie, H. S. Choi, and J. W. Choi, Int. J. Nanosci., 1, 611 (2002). https://doi.org/10.1142/S0219581X02000759
  9. S. Y. Oh, H. S. Choi, H. S. Jie, and J. K. Park, Mat. Sci. Eng., C 24, 91 (2004).
  10. S. Y. Lee and S. J. Lee, J. Jung, Ind. Eng. Chem., 9, 9 (2003).
  11. S. Y. Oh, H. S. Choi, H. J. Kim, and J. K. Park, Polymer (Korea), 29, 331 (2005).
  12. N. Nishida, M. Hara, H. Sasabe, and W. Knoll, Jpn. J. Appl. Phys., 36, 2379 (1997). https://doi.org/10.1143/JJAP.36.2379
  13. T. Ishida, W. Mizutani, H. Tokumoto, N. Choi, U. Akiba, and M. Fujihira, J. Vac. Sci. Technol. A., 18, 1437 (2000). https://doi.org/10.1116/1.582477