CO2 Absorption by Alkali-modified Amino Acid Salts

알칼리금속을 함침시킨 아미노산 염 수용액의 이산화탄소 흡수특성 연구

  • Lim, Yun-Hui (Department of Applied Environmental Science, Center for Environmental Studies, Kyung Hee University) ;
  • Jo, Young-Min (Department of Applied Environmental Science, Center for Environmental Studies, Kyung Hee University) ;
  • Park, Joon-Seok (Department of Environmental Engineering, Kangwon National University)
  • 임윤희 (경희대학교 환경응용과학과 환경연구센터) ;
  • 조영민 (경희대학교 환경응용과학과 환경연구센터) ;
  • 박준석 (강원대학교 환경공학과)
  • Received : 2011.08.01
  • Accepted : 2011.09.01
  • Published : 2011.10.10


The present study attempted to impregnate alkali metals to amino acid in order to improve $CO_2$ absorption capacity. A used amino acid was glycine, of which pH increased up to about 11 with the addition of alkalies. $CO_2$ absorption capacity of amino acid salts was evaluated in a batch and a continuous process. The absorption capacity appeared in turns as; Sodium Glycinate ${\geq}$ Lithium Glycinate > Potassium Glycinate. Amino acid salts showed lower absolute capacity of $CO_2$ absorption than primary amine (Monoethanolamine) at $20^{\circ}C$. In a continuous absorption with 10% $CO_2$ flow, the increasing the reaction temperature, the increasing rate of absorption for amino and was higher that of than amino absorbent.


GHG;$CO_2$;amino acid;metal salt


Grant : 실내공기질 개선을 위한 저농도 CO2 흡착선택도 향상 연구

Supported by : 한국연구재단


  1. W. J. Jang, Y. I. Yoon, S. D. Park, Y. W. Rhee, and I. H. Baek, J. Korean Ind. Eng. Chem., 19, 645 (2008).
  2. W. J. Ryu, K. H. Han, W. K. Choi, J. S. Lee, and S. J. Park, Korean Chem. Eng. Res., 47, 795 (2009).
  3. Y. H. Lim, K. M. Lee, H. S. Lee, and Y. M. Jo, J. KOSAE, 26, 286 (2010).
  4. S. Ma'mun, H. F. Svendsen, K. A. Hoff, and O. Juliussen, Energy Convers. Manage., 48, 251 (2007).
  5. I. H. Lee, S. I. Kim, and J. Y. Park, J. Korean Ind. Eng. Chem., 18, 239 (2007).
  6. T. Pintola, P. Tontiwachwuthikul, and A. Meisen, Gas Sep. Purif., 7, 47 (1993).
  7. Y. M. Cho, S. C. Nam, Y. I. Yoon, S. J. Moon, and I. H. Baek, Appl. Chem. Eng., 21, 195 (2010).
  8. H. J. Song, S. M. Lee, H. C. Song, S. W. Ahn, and J. W. Park, J. Energy Eng., 14, 219 (2005).
  9. B. R. Strazisar, R. R. Anderson, and C. M. White, Energy Fuels, 17, 1034 (2003).
  10. U. E. Aronu, H. F. Svendsen, and K. A. Hoff, Int. J. Greenhouse Gas Control, 4, 771 (2010).
  11. P. S. Kumar, J. A. Hogendoorn, G. F. Versteeg, and P. H. M. Feron, AlChE Journal, 49, 203 (2003).
  12. H. J. Song, S. M. Lee, J. H. Lee, J. W. Park, K. R. Jang, J. G. Shim, and J. H. Kim, Korean Soc. Environ. Eng., 31, 505 (2009).
  13. J. V. Holst, G. F. Versteeg, D. W. F. Brilman, and J. A. Hogendoorn, Chem. Eng. Sci., 64, 59 (2009).
  14. S. K. Oh, Y. W. Rhee, S. C. Nam, Y. I. Yoon, and Y. E. Kim, J. Energy Eng., 17, 251 (2008).
  15. T. McKee and J. R. McKee, Biochemistry, 3/E, 80pp, Life Science Publishing Co. (2004).
  16. L. G. Wade, Jr., Organic Chemistry, 1299pp, Prentice Hall (2001).
  17. H. W. Ko and H. K. Juang, J. Appl. Electrochem., 13, 725 (1983).
  18. R. J. Hook, Ind. Eng. Chem. Res., 36, 1779 (1997).
  19. J. V. Holst, S. R. A. Kersten, and K. J. A. Hogendoorn, J. Chem. Eng. Data, 53, 1286 (2008).
  20. C. Mathonat, V. Majer, A. E. Mather, and J. P. E. Grolier, Fluid Phase Equilib., 140, 170 (1997).
  21. S. W. Ahn, Y. K. Kim, H. C. Song, and J. W. Park, Energy Eng. J., 6, 203 (1997).