The Operating Condition and Flow Field Design Effect on the Anode Water Management of a Proton Exchange Membrane Fuel Cell (PEMFC)

운전조건 및 유로형상에 따른 고체고분자형 연료전지의 수소극에서의 수분관리

  • Hong, In Kwon (Department of Chemical Engineering, Dankook University) ;
  • Kim, Sunhoe (Department of New Energy & Resource Engineering, Sangji University)
  • 홍인권 (단국대학교 화학공학과) ;
  • 김선회 (상지대학교 신에너지.자원공학과)
  • Received : 2011.07.29
  • Accepted : 2011.08.20
  • Published : 2011.10.10

Abstract

A PEMFC single cell with the active area of $25cm^2$ was used to verify the effect of water management in the anode. Water management is one of the most critical operating variables. In this paper the effect of operating condition change, such as anode humidification and temperature, was investigated under constant current density of $200mA/cm^2$ where possible anode flooding operating area. Also experiments to observe the effect of the anode and cathode stoichiometry change and flow field design on the water management were performed. The water management was effected by the stoichimetry change. The temperature and humidification change also affected the fuel cell performance.

Keywords

fuel cell;flow field;hydrogen;water management

Acknowledgement

Supported by : 상지대학교

References

  1. X. Cheng, Z. Shi, N. Glass, L. Zhang, J. Zhang, D. Song, S. Liu, H. Wang, and J. Shen, J. Power Sources, 165, 739 (2007). https://doi.org/10.1016/j.jpowsour.2006.12.012
  2. G. Maggio, V. Recupero, and C. Mantegazza, J. Power Sources, 62, 167 (1996). https://doi.org/10.1016/S0378-7753(96)02433-0
  3. D. Picot, R. Metkmeijer, J. J. Bezian, and L. Rouveyre, J. Power Sources, 75, 251 (1998). https://doi.org/10.1016/S0378-7753(98)00123-2
  4. F. N. Buchi and S. Srinivasan, J. Electrochem. Soc., 144, 2767 (1997). https://doi.org/10.1149/1.1837893
  5. S. H. Chan, S. K. Goh, and S. P. Jiang, Electrochim. Acta, 48, 1905 (2003). https://doi.org/10.1016/S0013-4686(03)00269-X
  6. M. Noponen, T. Mennola, M. Mikkola, T. Hottinen, and P. Lund, J. Power Sources, 106, 304 (2002). https://doi.org/10.1016/S0378-7753(01)01063-1
  7. T. H. Yang, Y. G. Yoon, C. S. Kim, S. H. Kwak, and K. H. Yoon, J. Power Sources, 106, 328 (2002). https://doi.org/10.1016/S0378-7753(01)01025-4
  8. S. H. Kwak, T. H. Yang, C. S. Kim, and K. H. Yoon, J. Power Sources, 118, 200 (2003). https://doi.org/10.1016/S0378-7753(03)00094-6
  9. S. Shimpalee and J. W. Van Zee, Int. J. Hydrogen Energy, 32, 842 (2007). https://doi.org/10.1016/j.ijhydene.2006.11.032
  10. S. Shimpalee, S. Greenway, and J. W. Van zee, J. Power Source, 160, 398 (2006). https://doi.org/10.1016/j.jpowsour.2006.01.099
  11. S. S. Hsieh, S. H. Yang, J. K. Kuo, C. F. Huang, and H. H. Tsai, Energy Conversion & Management, 47, 1868 (2006). https://doi.org/10.1016/j.enconman.2005.10.011
  12. X. Li and I. Sabir, Int. J. Hydrogen Energy, 30, 359 (2005). https://doi.org/10.1016/j.ijhydene.2004.09.019
  13. X. Zhou, W. Ouyang, C. Liu, T. Lu, W. Xing, and L. An, J. Power Sources, 158, 1209 (2006). https://doi.org/10.1016/j.jpowsour.2005.10.025
  14. A. S. Arico, P. Creti, V. Baglio, E. Modica, and V. Antonucci, J. Power Sources, 91, 202 (2000). https://doi.org/10.1016/S0378-7753(00)00471-7
  15. X. Li and I. Sabir, Int. J. Hydrogen Energy, 30, 359 (2005). https://doi.org/10.1016/j.ijhydene.2004.09.019
  16. X. Zhou, W. Ouyang, C. Liu, T. Lu, W. Xing, and L. An, J. Power Sources, 158, 1209 (2006). https://doi.org/10.1016/j.jpowsour.2005.10.025
  17. W. Schmittinger and A. Vahidi, J. Power Sources, 180, 1 (2008). https://doi.org/10.1016/j.jpowsour.2008.01.070