Preparation of Magnesium Oxide Nanowires from a Magnesium Foil

마그네슘 금속으로부터의 산화마그네슘 나노와이어 제조

  • Lee, Byung Gun (Department of Chemical Engineering, Inha University) ;
  • Choi, Jinsub (Department of Chemical Engineering, Inha University)
  • 이병건 (인하대학교 화학공학과) ;
  • 최진섭 (인하대학교 화학공학과)
  • Received : 2011.07.29
  • Accepted : 2011.08.12
  • Published : 2011.10.10


Herein, we fabricated magnesium oxalate nanostructures by chemical etching of a magnesium foil in alcoholic solvents containing acidic media. Interestingly, we could obtain magnesium oxalate nanowires in ethanolic oxalic acid. Growth mechanism for magnesium oxalate nanowires was investigated in terms of etching time. Annealing conditions were determined from TGA results. Magnesium oxalate nanowires were converted to magnesium oxide nanowires by thermal treatment and the magnesium oxide nanowires were examined by FE-SEM and FT-IR measurement.


magnesium oxide;nanowires;oxalic acid;ethanol


Supported by : 인하대학교


  1. R. Hahn, J. G. Brunner, J. Kunze, P. Schmuki, and S. Virtanen, Electrochem. Commun., 10, 288 (2008).
  2. S. Shen, P. S. Chow, F. Chen, and R. B. H. Tan, Chem. Pharm. Bull., 55, 985 (2007).
  3. F. Haraguchi, K. Inoue, N. Toshima, S. Kobayashi, and K. Takatoh, J. Appl. Phys., 46, 796 (2007).
  4. J. P. Boeuf, J. Phys. D: Appl. Phys., 36, 53 (2003).
  5. S. W. Liu, J. Weaver, Z. Yuan, W. Donner, C. L. Chen, J. C. Jiang, E. I. Meletis, W. Chang, S. W. Kirchoefer, J. Horwitz, and A. Bhalla, Appl. Phys. Lett., 87, 142905 (2005).
  6. J. M. Phillips, J. Appl. Phys., 79, 1829 (1996).
  7. Y. Gu, D. Chen, X. Jiao, and F. Liu, J. Mater. Chem., 17, 1769 (2007).
  8. S. H. C. Liang and I. D. Gay, J. Catal., 101, 293 (1986).
  9. H. Tsuji, F. Yagi, H. Hattori, and H. Kita, J. Catal., 148, 759 (1994).
  10. H. Fang, B. Hu, L. Wang, R. Lu, and C. Yang, Front. Chem. China, 3, 193 (2008).
  11. Y. Ding, G. Zhang, H. Wu, B. Hai, L. Wang, and Y. Qian, Chem. Mater., 13, 435 (2001).
  12. H. Niu, Q. Yang, K. Tang, and Y. Xie, J. Nanoparticle Res., 8, 881 (2006).
  13. M. El-Shall, W. Slack, W. Vann, D. Kane, and D. Hanley, J. Phys. Chem., 98, 3067 (1998).
  14. J. S. Matthews, O. Just, B. Obi-Johnson, and W. S. Rees Jr., Chem. Vapour Deposition, 6, 129 (2000).<129::AID-CVDE129>3.0.CO;2-X
  15. F. Khairallah and A. Glisenti, J. Mol. Catal. Chem., 274, 137 (2007).
  16. S. Makhluf, R. Dror, Y. Nitzan, Y. Abramovich, R. Jelinek, and A. Gedanken, Adv. Funct. Mater., 15, 1708 (2005).
  17. J. G. Brunner, R. Hahn, J. Kunze, and S. Virtanen, J. Electrochem. Soc., 156, C62 (2009).
  18. M. A. Aramendia, V. Borau, C. Jimenz, J. M. Marinas, A. Porras, and F. J. Urbano, J. Mater. Chem., 6, 1943 (1996).
  19. Y. He, J. Wang, H. Deng, Q. Yin, and J. Gong, Ceram. Int., 34, 1399 (2008).
  20. C. Yan, C. Sun, Y. Shi, and D. Xue, J. Cryst. Growth, 310, 1708 (2008).
  21. P. Jeevanandam, R. S. Mulukutla, Z. Yang, H. Kwen, and K. J. Klabunde, Chem. Mater., 19, 5395 (2007).
  22. Y. Yan, L. Zhou, J. Zhang, H. Zeng, Y. Zhang, and L. Zhang, J. Phys. Chem. C, 112, 10412 (2008).
  23. Z. Zhou, Q. Sun, Z. Hu, and Y. Deng, J. Phys. Chem. B, 110, 13387 (2006).
  24. S. J. Kim, Y. T. Kim, and J. Choi, J. Cryst. Growth, 312, 2946 (2010).
  25. I. Jung, J. Choi, and Y. Tak, J. Mater. Chem., 20, 6164 (2010).
  26. L. D. Site, A. Alavi, and R. M. Lynden-Bell, J. Chem. Phys., 113, 3344, (2000).
  27. K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, p. 206, Wiley, London.
  28. M. Sharma and P. Jeevanandam, J. Alloys Compounds, 509, 7881 (2011).