Physical Properties of Insulating Composite Materials Using Natural Cellulose and Porous Ceramic Balls as a Core Materials

천연섬유질과 다공성 세라믹볼을 심재로 사용한 복합단열재의 물성

  • Hwang, Eui-Hwan (Department of Chemical Engineering, Kongju National University) ;
  • Cho, Soung-Jun (Department of Chemical Engineering, Kongju National University) ;
  • Kim, Jin-Man (Department of Architecture, Kongju National University)
  • 황의환 (공주대학교 화학공학부) ;
  • 조성준 (공주대학교 화학공학부) ;
  • 김진만 (공주대학교 건축학부)
  • Received : 2011.07.25
  • Accepted : 2011.08.16
  • Published : 2011.10.10

Abstract

To develop environmental-friendly insulating composite materials, natural cellulose and porous ceramic balls were used as core materials and activated Hwangtoh was used as a binder. Various specimens were prepared with different water/binder ratios and core material/binder ratios. The physical properties of these specimens were then investigated through compressive strengths, flexural strengths, absorption test, hot water resistance test, pore analysis, thermal conductivity, and observation of micro-structures using scanning electron microscope. Results showed that the maximum compressive strength varied appreciably with the water/binder ratios and core material/binder ratios, but the flexural strength increased with the core material/binder ratios regardless of water/binder ratios. The compressive strength and the flexural strength measured after the hot water resistance test decreased remarkably compared to those measured before test. The pore analysis measured after the hot water resistance test showed that total pore volume, porosity and average pore diameter decreased, while bulk density increased by the acceleration of hydration reaction of binder in the hot water. The thermal conductivity decreased gradually with an increase of core material/binder ratios. It can be evaluated that the composite insulation materials having good insulating properties and mechanical strengths can be used in the field.

Keywords

activated Hwangtoh;thermal conductivity;natural cellulose;porous ceramic ball

Acknowledgement

Supported by : 교육과학기술부

References

  1. D. K. Kim and S. B. Lee, J. Korean Ind. Eng. Chem., 17, 357 (2006).
  2. J. H. Jeong, J. U. Kim, and J. G Jeong, J. Korean Soc. Living Environ. Sys., 13, 320 (2006).
  3. H. H. Liang and M. C. Ho, Constr. Build. Mater., 21, 1254 (2007). https://doi.org/10.1016/j.conbuildmat.2006.05.051
  4. K. Al Rim, A. Ledhem, O. Douzane, R. M. Dheilly, and M. Queneudec, Cem. Concr. Compos., 21, 269 (1999). https://doi.org/10.1016/S0958-9465(99)00008-6
  5. J. Khedari, B. Suttisonk, N. Pratinthong, and J. Hirunlabh, Cem. Concr. Compos., 23, 65 (2001). https://doi.org/10.1016/S0958-9465(00)00072-X
  6. A. Bouguerra, A. Ledhem, F. de Barquin, R. M. Dheilly, and M. Queneudec, Cem. Concr. Res., 28, 1179 (1998). https://doi.org/10.1016/S0008-8846(98)00075-1
  7. H. Binici, O. Aksogan, M. N. Bbodur, E. Akca, and S. Kapur, Constr. Build. Mater., 21, 901 (2007). https://doi.org/10.1016/j.conbuildmat.2005.11.004
  8. P. Coatanlem, R. Jauberthie, and F. Rendell, Constr. Build. Mater., 20, 776 (2006). https://doi.org/10.1016/j.conbuildmat.2005.01.057
  9. M. Bederina, B. Laidoudi, A. Goullieux, M. M. Khenfer, A. Bali, and M. Queneudec, Constr. Build. Mater., 23, 1311 (2009). https://doi.org/10.1016/j.conbuildmat.2008.07.029
  10. M. Bederina, L. Marmoret, K. Mezreb, M. M. Khenfer, A. Bali, and M. Queneudec, Constr. Build. Mater., 21, 662 (2007). https://doi.org/10.1016/j.conbuildmat.2005.12.008
  11. A. Ledhem, R. M. Dheilly, M. L. Benmalek, and M. Queneudec, Constr. Build. Mater., 14, 341 (2000). https://doi.org/10.1016/S0950-0618(00)00037-4
  12. C. Asasutjarit, J. Hirunlabh, J. Khedari, S. Charoenvai, B. Zeghmati, and U. Cheul Shin, Constr. Build. Mater., 21, 277 (2007). https://doi.org/10.1016/j.conbuildmat.2005.08.028
  13. K. Gunasekaran, P. S. Kumar, and M. Lakshmipathy, Constr. Build. Mater., 25, 92 (2011). https://doi.org/10.1016/j.conbuildmat.2010.06.053
  14. V. K. Mathur, Constr. Build. Mater., 20, 470 (2006). https://doi.org/10.1016/j.conbuildmat.2005.01.031
  15. S. H. Lee, J. Korea Concr. Inst., 14, 742 (2002). https://doi.org/10.4334/JKCI.2002.14.5.742
  16. S. A. Lee, C. W. Jung, W. J. Kim, and J. H. Ahn, J. Korea Concr. Inst., 21, 745 (2009). https://doi.org/10.4334/JKCI.2009.21.6.745
  17. M. R. Jones and A. McCarthy, Cem. Concr. Res., 36, 1032 (2006). https://doi.org/10.1016/j.cemconres.2006.01.011
  18. M. S. Goual, A. Bali, F. de Barquin, R. M. Dheilly, and M. Queneudec, Cem. Concr. Res., 36, 1768 (2006). https://doi.org/10.1016/j.cemconres.2005.12.017
  19. N. Narayanan and K. Ramamurthy, Cem. Concr. Compos., 22, 321 (2000). https://doi.org/10.1016/S0958-9465(00)00016-0
  20. E. Aamr-Daya, T. Langlet, A, Benazzouk, and M. Queneudec, Cem. Concr. Compos., 30, 957 (2008). https://doi.org/10.1016/j.cemconcomp.2008.06.002
  21. K. J. Byun, H. W. Song, and S. S. Park, Intern. Cong. Polym. Concr., ed. Franco Sandrolini, 9, 99, Bologna, Italy (1998).
  22. H. Binici, O. Aksogan, D. Bakbak, H. Kaplan, and B. Isik, Constr. Build. Mater., 23, 1035 (2009). https://doi.org/10.1016/j.conbuildmat.2008.05.008
  23. S. S. Kang, S. L. Lee, H. Z. Hwang, and M. C. Cho, J. Korea Concr. Inst., 20, 549 (2008). https://doi.org/10.4334/JKCI.2008.20.5.549
  24. H. Y. Choi, M. H. Kim, M. H. Kim, H. Z. Hwang, and S. W. Choi, J. Korea Concr. Inst., 13, 123 (2001).
  25. S. B. Kim, J. W. Nam, N. H. Yi, J. H. Kim, and H. S. Choi, J. Korea Concr. Inst., 20, 619 (2008). https://doi.org/10.4334/JKCI.2008.20.5.619
  26. M. L. Torres and P. A. Garcia-Ruiz, Cem. Concr. Compos., 31, 114 (2009). https://doi.org/10.1016/j.cemconcomp.2008.11.003
  27. E. H. Hwang, Y. S. Ko, J. M. Kim, and T. S. Hwang, J. Korean Ind. Eng. Chem., 15, 628 (2009). https://doi.org/10.1016/j.jiec.2009.09.033