나프타 분해공정 부산물인 PFO로부터 탄소구조체 합성

Synthesis of Carbon Materials from PFO, Byproducts of Naphtha Cracking Process

  • 이지연 (호서대학교 화학공학과) ;
  • 박승규 (호서대학교 화학공학과)
  • Lee, Jiyon (Department of Chemical Engineering, Hoseo University) ;
  • Park, Seung-Kyu (Department of Chemical Engineering, Hoseo University)
  • 투고 : 2011.07.21
  • 심사 : 2011.08.16
  • 발행 : 2011.10.10

초록

나프타 분해 공정에서 필수적으로 발생되는 분해연료유(PFO, pyrolyzed fuel oil)에서 나프탈렌을 재결정해내고 남는 PFO 잔유물을 이용하여 $300{\sim}800^{\circ}C$에서 질소 조건에서 탄소구조체를 합성하여 보았다. PFO를 헥산이나 메탄올로 처리 후 얻은 탄소물질 프리커서를 열처리하면 $350^{\circ}C$에서는 수 십 ${\mu}m$ 크기의 flake 상의 탄소체가 만들어졌으나, $400^{\circ}C$ 이상에서는 수 ${\mu}m$로 크기가 줄며 공 모양의 탄소구조체로 변형되었다. BET와 XRD 스펙트럼에 따르면 공모양으로 합성된 메조상 탄소체는 큐빅상으로 미세 기공인 mesopore가 아직 잘 발달되지 많은 부정형 탄소임을 알려주고있다.

키워드

PFO;naphthalene extraction;raw pitch;carbon sphere;mesophase pitch

과제정보

연구 과제 주관 기관 : 호서대학교

참고문헌

  1. E. Hajekova, B. Mlynkova, M. Bajus, and L. Spodova, J. Anal. Appl. Pyrolysis, 79, 196 (2007). https://doi.org/10.1016/j.jaap.2006.12.022
  2. N. Viswanadham, G. Muralidhar, and T. S. R. P. Rao, Journal of Molecular Catalysis A: Chemical, 223, 369 (2004).
  3. J. C. Liu, B. X. Shen, D. Q. Wang, and J. H. Dong, Journal of Petroleum Science and Engineering, 66, 156 (2009). https://doi.org/10.1016/j.petrol.2009.02.009
  4. G. Wang, C. Xu, and J. Gao, Fuel Processing Technology, 89, 864 (2008). https://doi.org/10.1016/j.fuproc.2008.02.007
  5. M. R. Rahimpour, R. Vakili, E. Pourazadi, D. Iranshahi, and K. Paymooni, International Journal of Hydrogen Energy, 36, 2979 (2011). https://doi.org/10.1016/j.ijhydene.2010.11.112
  6. J. S. Hwang, C. H. Lee, K. H. Cho, M. S. Kim, C. J. Kim, S. K. Ryu, and B. S. Rhee, Hwahak Konghak, 33, 551 (1995).
  7. C. Kim, S. Y. Eom, S. K. Ryu, and D. D. Edie, Korean Chem. Eng. Res., 43, 745 (2005).
  8. M. Spiteller and J. A. Javanovic, Fuel, 78, 1263 (1999). https://doi.org/10.1016/S0016-2361(99)00052-6
  9. Y. Korai, S. H. Yoon, H. Oka, I. Mochida, T. Nakamura, I. Kato, and Y. Sakai, Carbon, 36, 369 (1998). https://doi.org/10.1016/S0008-6223(97)00181-4
  10. F. Watanabe, Y. Korai, I. Mochida, and Y. Nishimura, Carbon, 38, 741 (2000). https://doi.org/10.1016/S0008-6223(99)00148-7
  11. E. Mora, R. Santamaria, M. Granda, and R. Menendez, Carbon, 41, 445 (2003). https://doi.org/10.1016/S0008-6223(02)00354-8
  12. M. Dumont, M. A. Dourges, X. Bourrat, R. Pailler, R. Naslain, O. Babot, M. Birot, and J. P. Pillot, Carbon, 43, 2277 (2005). https://doi.org/10.1016/j.carbon.2005.04.007
  13. M. Z. Ozel and K. D. Bartle, Turk. J. Chem., 26, 417 (2002).
  14. M. Dumont, G. Chollon, M. A. Dourges, R. Pailler, X. Bourrat, R. Naslain, J. L. Bruneel, and M. Couzi, Carbon, 40, 1475 (2002). https://doi.org/10.1016/S0008-6223(01)00320-7
  15. K. J. Kim, J. W. Kim, J. K. Kim, and Y. H. Chen, J. Korean Ind. Eng. Chem., 13, 63 (2002).
  16. V. J. Mayani, S. V. Mayani, Y. Lee, and S. K. Park, Separation and Purification Tech., 80, 90 (2011). https://doi.org/10.1016/j.seppur.2011.04.013
  17. Y. Z. Jin, C. Gao, W. K. Hsu, Y. Zhu, A. Huczko. M. Bystrezejewski, M. Rho, C. Kroto, and D. R. M. Walton, Carbon, 43, 1944 (2005). https://doi.org/10.1016/j.carbon.2005.03.002
  18. R. Moriyama, H. Kumagai, J. I. Hayashi, C. Yamagichi, J. Mondori, H. Matsui, and T. Chiba, Carbon, 38, 749 (2000). https://doi.org/10.1016/S0008-6223(99)00152-9
  19. Y. G. Wang, Y. Korai, I. Mochida, K. Nagayama, H. Hatano, and N. Fukuda, Carbon, 39, 1627 (2001). https://doi.org/10.1016/S0008-6223(00)00281-5
  20. I. Mochida, Y. Korai, C. H. Ku, F. Watanabe, and Y. Sakai, Carbon, 38, 305 (2000). https://doi.org/10.1016/S0008-6223(99)00176-1
  21. Li, Ying, Z. Liang, Z. Rui, Q. Wen-ming, L. Xiao-yi, and L. Li-cheng, New Carbon Materials, 22, 259 (2007). https://doi.org/10.1016/S1872-5805(07)60021-3
  22. R. Moriyama, J. I. Hayashi, R. Goda, and T. Chiba, Materials Chemistry and Physics, 92, 205 (2005). https://doi.org/10.1016/j.matchemphys.2005.01.019
  23. M. Inagaki, Carbon, 35, 711 (1997). https://doi.org/10.1016/S0008-6223(97)86645-6
  24. V. Liedtke and K. J. Huttinger, Carbon, 34, 1057 (1996). https://doi.org/10.1016/0008-6223(96)00055-3
  25. K. M. Chioujones, W. Ho, B. Fathollahi, P. C. Chau, P. G. Wapner, and W. P. Hoffman, Carbon, 44, 284 (2006). https://doi.org/10.1016/j.carbon.2005.07.026
  26. V. Liedtke and K. J. Huttinger, Carbon, 34, 1081 (1996). https://doi.org/10.1016/0008-6223(96)00057-7
  27. V. G. Pol, M. Motieti, A. Gedanjen, J. C. Moreno, and M. Yoshimura, Carbon, 42, 111 (2004). https://doi.org/10.1016/j.carbon.2003.10.005
  28. Y. Korai, S. Ishida, S. H. Yoon, Y. G. Wang, I. Mochida, Y. Nakagawa, C. Yamaguchi, Y. Matsumura, Y. Sakai, and M. Komatu, Carbon, 35, 1503 (1997). https://doi.org/10.1016/S0008-6223(97)00101-2
  29. L. Xu, W. Zhang, Q. Yang, Y. Ding, W. Yu, and Y. Qian, Carbon, 43, 1084 (2005). https://doi.org/10.1016/j.carbon.2004.11.003
  30. A. A. Deshmukh, S. D. Mhlanga, and N. J. Coville, Materials Science and Engineering R, 70, 1 (2010). https://doi.org/10.1016/j.mser.2010.06.017
  31. Y. Yang, X. Liu, C. Y. Zhang, M. Guo, and B. Xu, Journal of Physics and Chemistry of Solids, 71, 235 (2010). https://doi.org/10.1016/j.jpcs.2009.11.012
  32. K. Oshida and S. Bonnamy, Carbon, 40, 2699 (2002). https://doi.org/10.1016/S0008-6223(02)00184-7
  33. H. Yang, Y. Tan, Y. Liu, F. Zhang, R. Zhang, Y. Meng, M. Li, S. Xie, B. Tu, and D. Zhao, J. Phys. Chem. B, 108, 17320 (2004). https://doi.org/10.1021/jp046948n
  34. S. Jun, S. H. Joo, R. Ryuu, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, and O. Terasaki, J. Am. Chem. Soc., 122, 10712 (2000). https://doi.org/10.1021/ja002261e
  35. Y. G. Wang, Y. C. Chang, S. Ishida, Y. Korai, and I. Mochida, Carbon, 37, 969 (1999). https://doi.org/10.1016/S0008-6223(98)00292-9