Synthesis of Carbon Materials from PFO, Byproducts of Naphtha Cracking Process

나프타 분해공정 부산물인 PFO로부터 탄소구조체 합성

  • Lee, Jiyon (Department of Chemical Engineering, Hoseo University) ;
  • Park, Seung-Kyu (Department of Chemical Engineering, Hoseo University)
  • 이지연 (호서대학교 화학공학과) ;
  • 박승규 (호서대학교 화학공학과)
  • Received : 2011.07.21
  • Accepted : 2011.08.16
  • Published : 2011.10.10


Separation of naphthalene from pyrolyzed fuel oil, by product of Naphta cracking process (NCC) process, has been accomplished by the solvent extraction, distillation and purification process. The residual pyrolyzed fuel oil (PFO), called precursor of carbon materials, has been calcined at $300{\sim}800^{\circ}C$ in nitrogen gas to raw pitch. After the treatment of PFO by hexane and methanol, either a flake phased carbon at $350^{\circ}C$ or a carbon sphere at above $400^{\circ}C$ forms. As the calcination temperature increases, the shape of raw pitch changes from the flake phase to the sphere one, and the size of them decreases to several ${\mu}m$. Based on the BET and XRD spectrum, the carbon sphere is classified to a mesophase amorphous carbon with a cubic phase.


PFO;naphthalene extraction;raw pitch;carbon sphere;mesophase pitch


Supported by : 호서대학교


  1. E. Hajekova, B. Mlynkova, M. Bajus, and L. Spodova, J. Anal. Appl. Pyrolysis, 79, 196 (2007).
  2. N. Viswanadham, G. Muralidhar, and T. S. R. P. Rao, Journal of Molecular Catalysis A: Chemical, 223, 369 (2004).
  3. J. C. Liu, B. X. Shen, D. Q. Wang, and J. H. Dong, Journal of Petroleum Science and Engineering, 66, 156 (2009).
  4. G. Wang, C. Xu, and J. Gao, Fuel Processing Technology, 89, 864 (2008).
  5. M. R. Rahimpour, R. Vakili, E. Pourazadi, D. Iranshahi, and K. Paymooni, International Journal of Hydrogen Energy, 36, 2979 (2011).
  6. J. S. Hwang, C. H. Lee, K. H. Cho, M. S. Kim, C. J. Kim, S. K. Ryu, and B. S. Rhee, Hwahak Konghak, 33, 551 (1995).
  7. C. Kim, S. Y. Eom, S. K. Ryu, and D. D. Edie, Korean Chem. Eng. Res., 43, 745 (2005).
  8. M. Spiteller and J. A. Javanovic, Fuel, 78, 1263 (1999).
  9. Y. Korai, S. H. Yoon, H. Oka, I. Mochida, T. Nakamura, I. Kato, and Y. Sakai, Carbon, 36, 369 (1998).
  10. F. Watanabe, Y. Korai, I. Mochida, and Y. Nishimura, Carbon, 38, 741 (2000).
  11. E. Mora, R. Santamaria, M. Granda, and R. Menendez, Carbon, 41, 445 (2003).
  12. M. Dumont, M. A. Dourges, X. Bourrat, R. Pailler, R. Naslain, O. Babot, M. Birot, and J. P. Pillot, Carbon, 43, 2277 (2005).
  13. M. Z. Ozel and K. D. Bartle, Turk. J. Chem., 26, 417 (2002).
  14. M. Dumont, G. Chollon, M. A. Dourges, R. Pailler, X. Bourrat, R. Naslain, J. L. Bruneel, and M. Couzi, Carbon, 40, 1475 (2002).
  15. K. J. Kim, J. W. Kim, J. K. Kim, and Y. H. Chen, J. Korean Ind. Eng. Chem., 13, 63 (2002).
  16. V. J. Mayani, S. V. Mayani, Y. Lee, and S. K. Park, Separation and Purification Tech., 80, 90 (2011).
  17. Y. Z. Jin, C. Gao, W. K. Hsu, Y. Zhu, A. Huczko. M. Bystrezejewski, M. Rho, C. Kroto, and D. R. M. Walton, Carbon, 43, 1944 (2005).
  18. R. Moriyama, H. Kumagai, J. I. Hayashi, C. Yamagichi, J. Mondori, H. Matsui, and T. Chiba, Carbon, 38, 749 (2000).
  19. Y. G. Wang, Y. Korai, I. Mochida, K. Nagayama, H. Hatano, and N. Fukuda, Carbon, 39, 1627 (2001).
  20. I. Mochida, Y. Korai, C. H. Ku, F. Watanabe, and Y. Sakai, Carbon, 38, 305 (2000).
  21. Li, Ying, Z. Liang, Z. Rui, Q. Wen-ming, L. Xiao-yi, and L. Li-cheng, New Carbon Materials, 22, 259 (2007).
  22. R. Moriyama, J. I. Hayashi, R. Goda, and T. Chiba, Materials Chemistry and Physics, 92, 205 (2005).
  23. M. Inagaki, Carbon, 35, 711 (1997).
  24. V. Liedtke and K. J. Huttinger, Carbon, 34, 1057 (1996).
  25. K. M. Chioujones, W. Ho, B. Fathollahi, P. C. Chau, P. G. Wapner, and W. P. Hoffman, Carbon, 44, 284 (2006).
  26. V. Liedtke and K. J. Huttinger, Carbon, 34, 1081 (1996).
  27. V. G. Pol, M. Motieti, A. Gedanjen, J. C. Moreno, and M. Yoshimura, Carbon, 42, 111 (2004).
  28. Y. Korai, S. Ishida, S. H. Yoon, Y. G. Wang, I. Mochida, Y. Nakagawa, C. Yamaguchi, Y. Matsumura, Y. Sakai, and M. Komatu, Carbon, 35, 1503 (1997).
  29. L. Xu, W. Zhang, Q. Yang, Y. Ding, W. Yu, and Y. Qian, Carbon, 43, 1084 (2005).
  30. A. A. Deshmukh, S. D. Mhlanga, and N. J. Coville, Materials Science and Engineering R, 70, 1 (2010).
  31. Y. Yang, X. Liu, C. Y. Zhang, M. Guo, and B. Xu, Journal of Physics and Chemistry of Solids, 71, 235 (2010).
  32. K. Oshida and S. Bonnamy, Carbon, 40, 2699 (2002).
  33. H. Yang, Y. Tan, Y. Liu, F. Zhang, R. Zhang, Y. Meng, M. Li, S. Xie, B. Tu, and D. Zhao, J. Phys. Chem. B, 108, 17320 (2004).
  34. S. Jun, S. H. Joo, R. Ryuu, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, and O. Terasaki, J. Am. Chem. Soc., 122, 10712 (2000).
  35. Y. G. Wang, Y. C. Chang, S. Ishida, Y. Korai, and I. Mochida, Carbon, 37, 969 (1999).