Thermal and Surface Properties of PET/Nylon66/Clay Nanocomposites

PET/Nylon66/Clay 나노복합재료의 열적물성 및 표면특성

  • Lee, Minho (Department of Chemical Engineering, University of Suwon) ;
  • Ku, Jahun (Department of Chemical Engineering, University of Suwon) ;
  • Min, Byung Hun (Department of Chemical Engineering, University of Suwon) ;
  • Kim, Jeong Ho (Department of Chemical Engineering, University of Suwon)
  • 이민호 (수원대학교 화학공학과) ;
  • 구자훈 (수원대학교 화학공학과) ;
  • 민병훈 (수원대학교 화학공학과) ;
  • 김정호 (수원대학교 화학공학과)
  • Received : 2011.07.19
  • Accepted : 2011.08.31
  • Published : 2011.10.10


Nanocomposites of blends of polyethyleneterephthalate (PET) and polyamide66 (Nylon66) containing natural and organically modified montmorillonite clays (PM, $Cloisite^{(R)}$ 25A and 15A) were prepared by melt mixing. DSC results showed that the addition of clay changed the crystallization behavior of PET/Nylon66 nanocomposites. Clay C25A was observed to most significantly change the crystallization temperature than other clays in blends of PET and Nylon66, which may be caused by the difference in interaction with matrix polymers. AFM results also showed that the lowest value of surface roughness was observed for nanocomposites containing C25A indicating the smooth and relatively homogenous surface. Mechanical properties measurement showed the similar results. Contact angle was measured to study the difference in hydrophobicity. An increase in contact angle was observed for nanocomposites with C25A or C15A due to the increased hydrophobicity.




  1. P. B. Messersmith and E. P. Giannelis, Chem. Mater., 6, 1719 (1994).
  2. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, A. Fujushima, T. Kurauchi, and O. Kamigaito, J. Mater. Res., 8, 1185 (1993).
  3. Jr F. M. Mirabella, Dekker Encyclopedia of Nanoscience and Nanotechnology, Marcel Dekker, Inc., 3015 (2004).
  4. B. Noval, Adv. Mater., 5, 422 (1993).
  5. S. D. Burnside and E. P. Giannelis, Chem. Mater., 7, 1597 (1995).
  6. R. A. Vaia and E. P. Giannelis, Macromolecules, 30, 8000 (1997).
  7. J. Park and S. C. Jana, Macromolecules, 36, 2758 (2003).
  8. J. Park and S. C. Jana, Macromolecules, 36, 8391 (2003).
  9. J. Park and S. C. Jana, Polymer, 45, 7673 (2004).
  10. S. Mehat, F. M. Mirabella, K. Rufener, and A. Bafna, J. Appl. Polym. Sci., 92, 928 (2004).
  11. X. Huang, S. Lewis, W. J. Brittain, and R. A. Vaia, Macromolecules, 33, 2000 (2000).
  12. K. M. Lee and C. D. Han, Macromolecules, 36, 7165 (2003).
  13. S. Choi, K. M. Lee, and C. D. Han, Macromolecules, 37, 7649 (2004).
  14. D. C. Lee and L. W. Jang, J. Appl. Polym. Sci., 61, 1117 (1996).<1117::AID-APP7>3.0.CO;2-P
  15. G. Chen, X. Chen, Z. Lin, and K. J. Yao, J Mater Sci Lett, 18, 1761 (1999).
  16. M. Okamoto, S. Moritta, H. Taguchi, Y. H. Kim, T. Kotaka, and H. Tateyama, Polymer, 41, 3887 (2000).
  17. T. Agag, T. Koga, and T. Takeichi, Polymer, 42, 3399 (2001).
  18. J. H. Park and S. C. Jana, Polymer, 44, 2091 (2003).
  19. S. Wang, Y. Hu, Z. Wang, T. Yong, Z. Chen, and W. Fan, Polym. Degrad. Stab., 80, 157 (2003).
  20. Y. Ke, C. Long, and Z. Qi. J. Appl. Polym. Sci., 71, 1139 (1998).
  21. C. H. Davis, L. J. Mathias, J. W. Gilman, D. A. Schiraldi, J. R. Shields, P. Trulove, T. E. Sutto, and H. C. Delong, J. Appl. Polym. Sci., 40, 2661 (2002).
  22. L. Shen, I. Y. Phang, L. Chen, T. Liu, and K. Zeng, Polymer, 45, 3341 (2004).
  23. Z. Z. Yu, C. Yan, M. Yang, and Y. W. Mail, Polym. Int., 53, 1093 (2004).
  24. C. I. W. Calcagno, C. M. Mariani, S. R. Teixeira, and R. S. Mauler, Polymer, 48, 966 (2007).
  25. I. Goitisolo, J. I. Eguiazábal, and J. Nazabal, Compos. Sci. Technol., 70, 873 (2010).
  26. W. Xiao, H. Yu, K. Han, and M. Yu, J. Appl. Polym. Sci., 96, 2247 (2005).