Removal of Diazinon Using Recombinant Biocatalyst

재조합 생촉매를 이용한 Diazinon 제거

  • Choi, Suk Soon (Department of Biological and Environmental Engineering, Semyung University) ;
  • Seo, Sang Hwan (Department of Biological and Environmental Engineering, Semyung University) ;
  • Kang, Dong Gyun (Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Cha, Hyung Joon (Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Kwon, Inchan (Department of Chemical Engineering, University of Virginia)
  • 최석순 (세명대학교 바이오환경공학과) ;
  • 서상환 (세명대학교 바이오환경공학과) ;
  • 강동균 (포항공과대학교 화학공공학과) ;
  • 차형준 (포항공과대학교 화학공공학과) ;
  • 권인찬 (버지니아대학교 화학공학과)
  • Received : 2011.07.12
  • Accepted : 2011.08.03
  • Published : 2011.10.10

Abstract

In the present work, diazinon which is known as nondegradable and environmental toxic material was efficiently treated by the cell surface-displayed organophosphorus hydrolase (OPH) biocatalyst. The culture temperature of $25^{\circ}C$ culture temperature and the addition of 0.2 mM ethylenediamine tetraacetate (EDTA) were effective conditions for the production of recombinant OPH in Escherichia coli. 25 and 50 ppm diazinon were treated with removal rate of 4.5 and $7.2mg/g{\cdot}min$, respectively and with all over 90% removal efficiencies using recombinant cell lysates through ultrasonication disruption process. Thus, these experimental results could be utilized in environmental friendly biological treatment system for toxic chemicals such as diazinon.

Keywords

diazinon;organophosphorus hydrolase;cell surafce display;removal rate of diazinon;Escherichia coli

References

  1. M. A. Matouq, Z. A. Al-Anber, T. Tagawa, S. Aljbour, and M. Al-Shannang, Ultrasonics Sonochemistry, 15, 869 (2008). https://doi.org/10.1016/j.ultsonch.2007.10.012
  2. A. A. Basfar, K. A. Mohamed, A. J. Al-Abduly, T. S. Al-kuraiji, and A. A. Al-Shahrani, Radiation Phys. Chem., 76, 1474 (2007). https://doi.org/10.1016/j.radphyschem.2007.02.055
  3. N. Daneshvar, S. Aber, M. S. Seyed Dorraji, A. R. Khataee, and M. H. Rasoulifard, Separation and Purification Technology, 58, 91 (2007). https://doi.org/10.1016/j.seppur.2007.07.016
  4. H. Shemer and K. G. Linden, J. Hazardous Mater. B, 136, 553 (2006). https://doi.org/10.1016/j.jhazmat.2005.12.028
  5. P. C. H. Li, E. J. Swanson, and F. A. P. C. Gogas, Bull. Environ. Contam. Toxicol., 69, 59 (2002). https://doi.org/10.1007/s00128-002-0010-0
  6. W. Chen and A. Mulchandani, Trends in Biotechnol., 16, 71 (1998). https://doi.org/10.1016/S0167-7799(97)01160-8
  7. Y. Ku and H.-S. Lin, Water Res., 36, 4145 (2002).
  8. M. I. Badawy, M. Y. Ghaly, and T. A. Gad-Allah, Desalination, 194, 166 (2006). https://doi.org/10.1016/j.desal.2005.09.027
  9. S. Chen, D. Sun, and J.-S. Chung, J. Hazardous Mater., 144, 577 (2007). https://doi.org/10.1016/j.jhazmat.2006.10.075
  10. C. S. McDaniel, L. L. Harper, and J. R. Wild, J. Bacteriol., 170, 2306 (1998).
  11. W. W. Mulbury and J. S. Karns, J. Bacteriol., 171, 6740 (1998).
  12. S. Chiron, A. Fernandez-Alba, A. Rodriguez, and E. Garcia-Calvo, Water Res., 34, 366 (2000). https://doi.org/10.1016/S0043-1354(99)00173-6
  13. L. li, D. G Kang, and H. J. Cha, Biotechnol. Bioeng., 85, 214 (2004). https://doi.org/10.1002/bit.10892
  14. J. K. Grimslery, J. M. Scholtz, C. N. Psce, and J. R. Wild, Biochemistry, 36, 14366 (1997). https://doi.org/10.1021/bi971596e