Synthesis of Pt-Bi/Carbon Electrodes by Reduction Method for Direct Methanol Fuel Cell

환원법에 의한 직접 메탄올 연료전지(DMFC)용 Pt-Bi/Carbon 전극제조

  • Kim, Kwan Sung (Department of Chemical Engineering, Inha University) ;
  • Kim, Min Kyung (Department of Chemical Engineering, Inha University) ;
  • Noh, Dong Kyun (Department of Chemical Engineering, Inha University) ;
  • Tak, Yongsug (Department of Chemical Engineering, Inha University) ;
  • Baeck, Sung-Hyeon (Department of Chemical Engineering, Inha University)
  • 김관성 (인하대학교 화학공학과) ;
  • 김민경 (인하대학교 화학공학과) ;
  • 노동균 (인하대학교 화학공학과) ;
  • 탁용석 (인하대학교 화학공학과) ;
  • 백성현 (인하대학교 화학공학과)
  • Received : 2011.06.17
  • Accepted : 2011.08.09
  • Published : 2011.10.10


Pt-Bi/C catalysts supported on carbon black with various Pt/Bi ratios were synthesized by a reduction method. Chloroplatinic acid hydrate ($H_2PtCl_6{\cdot}xH_2O$) and bismuth (III) nitrate pentahydrate ($Bi(NO_3)_3{\cdot}5H_2O$) were used as precursors for Pt and Bi, respectively. Before loading metal on carbon, heat treatment and pretreatment of carbon black in an acidic solution was conducted to enhance the degree of dispersion. The physical property of the synthesized catalysts was investigated by X-ray diffraction and X-ray photoelectron spectroscopy. The XRD pattern of untreated Pt-Bi/C catalyst showed BiPt and $Bi_2Pt$ peaks in addition to Pt peaks. These results imply that Bi atoms were incorporated into the Pt crystal lattice by Pt-Bi alloy formation. The catalytic activity for methanol oxidation was measured using cyclic voltammetry in a mixture of 0.5 M $H_2SO_4$ and 0.5 M $CH_3OH$ aqueous solution. The addition of proper amount of Bi was found to significantly improve catalytic activity for methanol oxidation. The catalytic activity for methanol oxidation was closely related to the stability between electrode and electrolyte. In order to investigate the stability of catalysts, chronoamperometry analysis was carried out in the same solution at 0.6 V.


reduction method;Pt-Bi/C;methanol oxidation


Supported by : Korea Institute of Energy and Resources Technology Evaluation and Planning (KETEP)


  1. W. Li, Q. Xin, and Y. Yan, Int. J. Hydrogen Energy, 35, 2530 (2010).
  2. A. Hamnett, Catalysis Today, 38, 445 (1997).
  3. B. D. McNicol, D. A. J. Rand, and K. R. Willaiams, J. Power Sources, 83, 15 (1999).
  4. S. Wasmus and A. Kuver, J. Electroanal. Chem., 461, 14 (1999).
  5. X. Ren, P. Zelenay, S. Thomas, J. Davey, and S. Gottesfeld, J. Power Sources, 86, 111 (2000).
  6. A. S. Aricò, S. Srinivasan, and V. Antonucci, Fuel Cells, 2, 133 (2001).
  7. W. Li, C. Liang, W. Zhou, J. Qiu, Z. Zhou, G. Sun, and Q. Xin, J. Phys. Chem., 107, 6292 (2003).
  8. J. S. Lee, K. I. Han, S. O. Park, H. N. Kim, and H. S. Kim, Electrochim. Acta, 50, 807 (2004).
  9. C. H. Pak, S. J. Lee, S. A. Lee, and H. Chang, Korean J. Chem. Eng., 22, 214 (2005).
  10. M. Kimberly, G. K. Mcgrath, S. Prakash, and G. A. Olah, J. Ind. Eng. Chem., 10, 1063 (2004).
  11. P. Statti, Z. Poltarzewski, V. Alderucci, G. Maggio, and N. Giordano, Int. J. Hydrogen Energy, 19, 523 (1994).
  12. S. C. Hall, V. Subramanian, G. Teeter, and B. Rambabu, Solid State Ionics, 175, 809 (2004).
  13. H. Wang, Z. Jusys, and R. J. Behm, J. Power Sources, 154, 351 (2006).
  14. F. Delime, J. M. Leger, and C. Lamy, J. Appl. Electrochem., 29, 1249 (1999).
  15. G. C. Li and P. G. Pickup, Electrochim. Acta, 52, 1033 (2006).
  16. Y. J. Jung, S. Kim, S. J. Park, and J. M. Kim, Colloids Surf. A: Physicochem. Eng. Asp., 167, 313 (2008).
  17. C. A. Bessel, K. Laubernds, N. M. Rodriguez, and R. T. K. Baker, J. Phys. Chem. B, 105, 1115 (2001).
  18. S. Ueda, M. Eguchi, K. Uno, Y. Tsutsumi, and N. Ogawa, Solid State Ionics, 177, 175 (2006).
  19. G. S. Chai, S. B. Yoon, J. S. Yu, J. H. Choi, and Y. E. Sung, J. Phys. Chem. B, 108, 7074 (2004).
  20. Y. Lin, X. Cui, C. Yen, and C. M. Wai, J. Phys. Chem. B, 109, 14410 (2005).
  21. X. Li, G. Chen, J. Xie, L. Zhang, D. Xia, and Z. Wu, J. Electrochem. Soc., 157, B580 (2010).
  22. J.-S. Do, Y.-T. Chen, and M.-H. Lee, J. Power Sources, 172, 623 (2007).
  23. J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradly, and P. J. Boul, Science, 280, 1253 (1998).
  24. B. C. Satishkumar, E. M. Vogl, A. Govindaraj, and C. N. R. Rao, J. Phys. D, 29, 3173 (1996).
  25. B. C. Satishkumar, A. Govindaraj, J. Mofokeng, G. N. Shbbanna, and C. N. R. Rao, J. Phys. B: At. Mol. Opt. Phys., 29, 4925 (1996).
  26. F. Dawood, B. M. Leonard, and R. E. Schaak, Chem. Mater., 19, 4545 (2007).
  27. C. Jeyabharathi, J. Mathiyarasu, and K. L. N. Phani, J. Appl. Electrochem., 39, 45 (2009).
  28. A. V. Tripkovic, K. Dj. Popovic, R. M. Stevanovic, R. Socha, and A. Kowal, Electrochemistry Communications, 8, 1492 (2006).
  29. D. M. Han, Z. P. Guo, R. Zeng, C. J. Kim, Y. Z. Meng, and H. K. Liu, Int. J. Hydrogen Energy, 34, 2426 (2009).
  30. K. J. J. Mayrhofer, J. C. Meier, S. J. Ashton, G. K. H. Wiberg, F. Kraus, M. Hanzlik, and M. Arenz, Electrochemistry Communications, 10, 1144 (2008).
  31. Z. Siroma, K. Ishii, K. Yasuda, M. Inaba, and A. Tasaka, J. Power Sources, 171, 524 (2007).
  32. A. S. AriCo, S. Srinivasan, and V. Antonucci, Fuel Cells, 1, 133 (2001).<133::AID-FUCE133>3.0.CO;2-5
  33. P. Liu and J. K. Norskov, Fuel Cells, 1, 192 (2001).<192::AID-FUCE192>3.0.CO;2-M
  34. T. Frelink, W. Visscher, and J. A. R. van Veen, Surf. Sci., 335, 353 (1995).
  35. G. Samjeske, H. Wang, T. Loffler, and H. Baltruschat, Electrochim. Acta, 47, 3681 (2002).