Solubilization of Para-Halogenated Benzoic Acid Isomers by the Solution of Tetradecyltrimethylammonium Bromide

Tetradecyltrimethylammonium Bromide 용액에서 Para-할로겐화 벤조산 이성질체들의 가용화에 대한 연구

  • Lee, Nam-Min (Department of Applied Chemical Engineering, Korea University of Technology & Education) ;
  • Lee, Byung-Hwan (Department of Applied Chemical Engineering, Korea University of Technology & Education)
  • 이남민 (한국기술교육대학교 응용화학공학과) ;
  • 이병환 (한국기술교육대학교 응용화학공학과)
  • Received : 2011.05.24
  • Accepted : 2011.08.02
  • Published : 2011.10.10


The interaction of para-halogenated benzoic acid isomers with the micellar system of tetradecyltrimethylammonium bromide was studied by the UV/Vis spectrophotometric method. The solubilization constants ($K_s$) of benzoic acid isomers into the micellar system of TTAB and the critical micelle concentration (CMC) of TTAB have been measured with the change of temperature. Various thermodynamic parameters have been calculated and analyzed from those measurement. The results show that the values of ${\Delta}G^{\circ}{_s}$ for the solubilization of all isomers are negative and the values of ${\Delta}H^{\circ}{_s}$ and ${\Delta}S^{\circ}{_s}$ are all positive within the measured temperature range. The effects of additives (n-butanol and NaCl) on the solubilization of benzoic acid isomers have been also measured. There was a great decrease on the values of $K_s$ and CMC simultaneously with these additives. From these changes we can postulate that the solubilization sites of each isomers in the TTAB micellar system are the surface or the palisade region of the micelle.


tetradecyltrimethylammonium bromide;solubilization constant;benzoic acid;critical micelle concentration;isostructural temperature


  1. B. H. Lee, S. D. Christian, E. E. Tucker, and J. F. Scamehorn, Langmuir, 7, 1332 (1991).
  2. S. K. Mehta, S. Chaudhary, R. Kumar, and K. K. Bhasin, J. Phys. Chem. B, 113, 7188 (2009).
  3. T. Chakraborty, I. Chakraborty, S. P. Moulik, and S. Ghosh, Langmuir, 25, 3062 (2009).
  4. R. Chaghi, L. C. de Menorval, C. Charnay, G. Derrin, and J. Zajac, Langmuir, 25, 4868 (2009).
  5. Y. Moroi, K. Mitsunobu, T. Morisue, Y. Kadobayashi, and M. Sakai, J. Phys. Chem., 9, 2372 (1995).
  6. S. Lu and P. Somasundaran, Langmuir, 23, 9960 (2007).
  7. M. Takeuchi and Y. Moroi, Langmuir, 11, 4719 (1995).
  8. K. J. Rao and S. Paria, J. Phys. Chem. B, 113, 474 (2009).
  9. S. K. Mehta, S. Chaudhary, R. Kumar, and K. K. Bhasin, J. Phys. Chem. B, 113, 7188 (2009).
  10. A. Mahata, D. Sarkar, D. Bose, D. Ghosh, A. Girigoswami, P. Das, and N. Chattopadhyay, J. Phys. Chem. B, 113, 7517 (2009).
  11. S. Nakamura, L. Kobayashi, R. Tanaka, T. I. Yamashita, K. Motomura, and Y. Moroi, Langmuir, 24, 15 (2008).
  12. M. Ali. M. Jha, S. K. Das, and S. K. Saha, J. Phys. Chem. B, 113, 15563 (2009).
  13. T. S. Banipal, A. K. Sood, and K. Singh, J. Surfact. Deterg., 14, 235 (2011).
  14. B. H. Lee and N. M. Lee, J. Kor. Chem. Soc., 54, 374 (2010).
  15. B. H. Lee, Appl. Chem. Eng., 21, 337 (2010).
  16. K. Behera, H. Om, and S. Pandey, J. Phys. Chem. B, 113, 786 (2009).
  17. M. Sammalkorpi, M. Karttunen, and M. Haatoja, J. Phys. Chem. B, 113, 5863 (2009).
  18. L. D. Leclercq, S. Giroux, B. Henry, and P. Rubini, Langmuir, 23, 10463 (2007).
  19. S. Rozner, A. Kogan, S. Mehta, P. Somasundaran, A. Aserin, N. Garti, and M. F. Ottaviani, J. Phys. Chem. B, 113, 700 (2009).
  20. J. Penfold, T. A. Green, G. C. Jones, G. Ford, C. Roberts, J. Hubbard, J. Petkov, R. K. Thomas, and I. Grillo, Langmuir, 24, 12209 (2008).
  21. A. Jusufi, A. P. Hynninen, M. Haataja, and A. Z. Panagiotopoulos, J. Phys. Chem. B, 113, 6314 (2009).
  22. M. N. Khan and H. R. Azri, J. Phys. Chem. B, 114, 8089 (2010).