Fluoro-illite/polypropylene Composite Fiber Formation and Their Thermal and Mechanical Properties

불소화 일라이트/폴리프로필렌 복합섬유 형성 및 열 및 기계적 특성

  • Jeong, Euigyung (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Lee, Young-Seak (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University)
  • 정의경 (충남대학교 정밀응용화학과) ;
  • 이영석 (충남대학교 정밀응용화학과)
  • Received : 2011.04.14
  • Accepted : 2011.05.17
  • Published : 2011.10.10

Abstract

This study investigated illite/polypropylene (PP) composite filament formation via melt-spinning and evaluated their physical properties to prepare functional fibers using natural materials. When composite filaments were formed, the composite filaments exhibited smaller fiber diameters compared to that of neat PP filament because of the lubricant effect of illite induced by its layered structure. Moreover, fluorination effect increased interfacial affinity and dispersion in the polymer, resulting in smaller diameter of fluorinated illite/PP composite filament, which was 2/3 of the neat PP filament diameter. Addition of raw and fluorinated illite improved thermal stability of illite/PP composite filament. Raw illite/PP composite filament cannot be used for a practical application, because it broke during drawing process, whereas the fluorinated illite/PP composite filament can be used for a practical application, because it exhibited similar tensile strength of the neat PP filament and 50% increased modulus. Even with improved illite/PP interfacial affinity and illite dispersion in the polymer, illite/PP composite filament formed microcomposite, because non-expandable illite had strongly bound layers, resulting in only a little illite exfoliation and PP intercalation into illite.

Keywords

polypropylene;illite;composite fiber;fluorination

References

  1. C. R. Reddy, A. P. Sardashti, and L. C. Simon, Compos. Sci. Technol., 70, 1674 (2010). https://doi.org/10.1016/j.compscitech.2010.04.021
  2. S. S. Ray and M. Okamoto, Prog. Polym. Sci., 28, 1539 (2003). https://doi.org/10.1016/j.progpolymsci.2003.08.002
  3. P. Kiliaris and C. D. Papaspyrides, Prog. Polym. Sci., 35, 902 (2010). https://doi.org/10.1016/j.progpolymsci.2010.03.001
  4. S. B. Kwak, S. D. Hwang, J. E. Nam, J. S. Ko, H. K. Choo, and J. H. Kong, Polymer (Korea), 26, 260 (2002).
  5. S. G. Lee, J. C. Won, J. H. Lee, and K. Y. Choi, Polymer (Korea), 29, 248 (2005).
  6. J. H. Lee, J. H. Nam, D. H. Lee, M. D. Kim, J. H. Kong, Y. K. Lee, and J. D. Nam, Polymer (Korea), 27, 569 (2003).
  7. G. M. Whitesides, T. P. Mathias, and C. T. Seto, Science, 254, 1312 (1991). https://doi.org/10.1126/science.1962191
  8. C. O. Choo, J. Miner. Soc. Korea (Mineral & Industry), 14, 29 (2001).
  9. I. M. Kang, H. S. Moon, Y. J. Kim, Y. G. Song, and W. P. Lee, Proceedings of the Annual Joint Conference, Petrological Society of Korea and Mineralogical Society of Korea, 75, Cheongju, Korea, April 2004 (2004).
  10. J. W. Im, E. Jeong, K.-W. Seo, and Y.-S. Lee, Appl. Chem. Eng., 22, 133 (2011).
  11. Korean Patent 10-2004-0045479 (2004).
  12. Korean Patent 10-0698342 (2007).
  13. Korean Patent 10-2002-0033033 (2002).
  14. J. M. Lee, S. J. Kim, J. W. Kim, P. H. Kang, Y. C. Nho, and Y. S. Lee, J. Ind. Eng. Chem., 15, 66 (2009). https://doi.org/10.1016/j.jiec.2008.08.010
  15. H.-R. Yu, E. Jeong, J. Kim, T.-J. Kim, and Y.-S. Lee, Polymer (Korea), 35, 47 (2011).
  16. E. Jeong, J. Kim, S. H. Cho, J.-I. Kim, I.-S. Han, and Y.-S. Lee, J. Ind. Eng. Chem., 17, 77 (2011). https://doi.org/10.1016/j.jiec.2010.10.012
  17. E. Jeong, J. Kim, and Y.-S. Lee, Carbon Lett., 11, 293 (2010). https://doi.org/10.5714/CL.2010.11.4.293
  18. S. Xie, E. Harkin-Jones, Y. Shen, P. Hornsby, M. McAfee, T. McNally, R. Patel, H. Benkreira, and P. Coates, Mater. Lett., 64, 185 (2010). https://doi.org/10.1016/j.matlet.2009.10.042
  19. K. S. Santos, S. A. Liberman, M. A. S. Oviedo, and R. S. Mauler, Composites Part A, 40, 1199 (2009). https://doi.org/10.1016/j.compositesa.2009.05.009
  20. Y.-H. Song and K.-S. Chung, J of Korean Institute of Fire Sci. & Eng., 22, 300 (2008).
  21. Y. K. Jang, W. N. Kim, J. K. Kim, M. Park, and H. G. Yoon, Polymer (Korea), 30, 492 (2006).
  22. S. S. Han, K.-Y. Choi, S. S. Im, and Y. S. Kim, J. Ind. Eng. Chem., 12, 177 (2006).
  23. J. S. Im, S. K. Lee, S. J. In, and Y.-S. Lee, J. Anal. Appl. Pyrolysis, 89, 225 (2010). https://doi.org/10.1016/j.jaap.2010.08.003
  24. G. Park and Y. Jeong, Text. Sci. Eng., 47, 261 (2010).
  25. S. S. Han, T. G. Lee, and H. S. Shin, Text. Sci. Eng., 39, 21 (2002).
  26. T. G. Lee, H. Im, and H. Shin, Text. Sci. Eng., 37, 88 (2000).
  27. S.-J. Park, B.-R. Jun, S.-Y. Song, and J.-M. Rhee, Appl. Chem. Eng., 15, 23 (2004).
  28. S. G. Lyu, Y. C. Lee, and G. S. Sur, Appl. Chem. Eng., 11, 512 (2000).
  29. G.-S. Sur, J.-G. Ryu, S.-G. Lyu, H.-K. Choi, and B.-S. Kim, Appl. Chem. Eng., 10, 615 (1999).
  30. S.-J. Park, B.-R. Jun, J.-R. Lee, and D.-H. Suh, Appl. Chem. Eng., 14, 440 (2003).