Electrochemical Characterization of Fluorine Doped TiO2 Dye-Sensitized Solar Cells

불소 도핑 TiO2 염료감응형 태양전지의 전기화학적 특성

  • Lee, Sung Kyu (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Im, Ji Sun (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Lee, Young-Seak (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University)
  • 이성규 (충남대학교 정밀응용화학과) ;
  • 임지선 (충남대학교 정밀응용화학과) ;
  • 이영석 (충남대학교 정밀응용화학과)
  • Received : 2011.04.12
  • Accepted : 2011.05.26
  • Published : 2011.10.10

Abstract

In this study, the fluorine doped $TiO_2$ was prepared as a photoelectrode in order to improve the efficiency of dye-sensitized solar cells and estimated the electrochemical characterizations. The energy conversion efficiency of the prepared dye-sensitized solar cells using fluorine doped $TiO_2$ was calculated from a current-voltage curve. The efficiency of prepared dye-sensitized solar cells was improved by about maximum three times by F-doping on $TiO_2$. It was suggested that the efficiency of dye-sensitized solar cells was improved by hybrid semiconductors of $TiO_2/TiOF_2$ in photoelectrode based on reduced $TiOF_2$ energy level via fluorine doping. It can be confirmed that the electron transport was faster but the electron recombination was slower by doping fluorine on $TiO_2$ in photoelectrode through intensity-modulated photocurrent spectroscopy and intensity-modulated photovoltage spectroscopy analysis.

Keywords

dye-sensitized solar cells;fluorine doping;electron transport;electron lifetime

References

  1. C. Li, X. Yang, R. Chen, J. Pan, H. Tian, H. Zhu, X. Wang, A. Hagfeldt, and L. Sun, Sol. Energy Mater. Sol. Cells, 91, 1863 (2007). https://doi.org/10.1016/j.solmat.2007.07.002
  2. H. Matsui, K. Okada, T. Kitamura, and N. Tanabe, Sol. Energy Mater. Sol. Cells, 93, 1110 (2009). https://doi.org/10.1016/j.solmat.2009.01.008
  3. J. Chen, C. Li, J. L. Song, X. W. Sun, W. Lei, and W. Q. Deng, Appl. Surf. Sci., 255, 7508 (2009). https://doi.org/10.1016/j.apsusc.2009.03.091
  4. Y. Zhang, Y. Shen, F. Gu, M. Wu, Y. Xie, and J. Zhang, Appl. Surf. Sci., 256, 85 (2009). https://doi.org/10.1016/j.apsusc.2009.07.074
  5. J. S. Im, S. K. Lee, and Y. S. Lee, Appl. Surf. Sci., 257, 2164 (2011). https://doi.org/10.1016/j.apsusc.2010.09.066
  6. Z. Tian, M. Huang, B. Zhao, H. Huang, X. Feng, Y. Nie, P. Shen, and S. Tan, Dyes Pigment., 87, 181 (2010). https://doi.org/10.1016/j.dyepig.2010.03.029
  7. M. K. I. Senevirathna, P. K. D. D. P. Pitigala, E. V. A. Premalal, K. Tennakone, G. R. A. Kumara, and A. Konno, Sol. Energy Mater. Sol. Cells, 91, 544 (2007). https://doi.org/10.1016/j.solmat.2006.11.008
  8. P. Qin, M. Linder, T. Brinck, G. Boschloo, A. Hagfeldt, and L. Sun, Adv. Mater., 21, 2993 (2009). https://doi.org/10.1002/adma.200802461
  9. B. Tan, E. Toman, Y. Li, and Y. Wu, J. Am. Chem. Soc., 129, 4162 (2007). https://doi.org/10.1021/ja070804f
  10. C. S. Chou, Y. J. Lin, R. Y. Yang, and K. H. Liu, Adv. Powder Technol., 22, 31 (2011). https://doi.org/10.1016/j.apt.2010.03.003
  11. A. Kay, and M. Gratzel, Chem. Mater., 14, 2930 (2002). https://doi.org/10.1021/cm0115968
  12. N. G. Park, M. G. Kang, K. M. Kim, K. S. Ryu, and S. H. Chang, Langmuir, 20, 4246 (2004). https://doi.org/10.1021/la036122x
  13. J. P. Guo and M. A. Aegerter, Thin Solid Films, 351, 290 (1999). https://doi.org/10.1016/S0040-6090(99)00215-1
  14. Q. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe, and G. Cao, Angew. Chem. Int. Ed., 47, 2402 (2008). https://doi.org/10.1002/anie.200704919
  15. C. Kim, K. Kim, H. Y. Kim, and Y. S. Han, J. Mater. Chem., 18, 5809 (2008). https://doi.org/10.1039/b805091k
  16. S. Lee, J. H. Noh, H. S. Han, D. K. Yim, D. H. Kim, J. K. Lee, J. Y. Kim, H. S. Jung, and K. S. Hong, J. Phys. Chem. C, 113, 6878 (2009). https://doi.org/10.1021/jp9002017
  17. S. H. Kang, H. S. Kim, J. Y. Kim, and Y. E. Sung, Mater. Chem. Phys., 124, 422 (2010). https://doi.org/10.1016/j.matchemphys.2010.06.059
  18. S. J. Kim, S. M. Yun, H. Kim, and Y. S. Lee, Carbon Lett., 10, 123 (2009). https://doi.org/10.5714/CL.2009.10.2.123
  19. T. Ma, M. Akiyama, E. Abe, and I. Imai, Nano Lett., 5, 2543 (2005). https://doi.org/10.1021/nl051885l
  20. H. Tian, L. Hu, C. Zhang, S. Chen, J. Sheng, L. Mo, W. Liu, and S. Dai, J. Mater. Chem., 21, 863 (2011). https://doi.org/10.1039/c0jm02941f
  21. D. Li, H. Haneda, N. K. Labhsetwar, S. Hishita, and N. Ohashi, Chem. Phys. Lett., 401, 579 (2005). https://doi.org/10.1016/j.cplett.2004.11.126
  22. J. He, Q.Z. Cai, Y. G. Ji, H. H. Luo, D. J. Li, and B. Yu, J. Alloy. Compd., 482, 476 (2009). https://doi.org/10.1016/j.jallcom.2009.04.063
  23. J. S. Im, I. J. Park, S. J. In, T. Kim, and Y. S. Lee, J. Fluor. Chem., 130, 1111 (2009). https://doi.org/10.1016/j.jfluchem.2009.06.022
  24. M. V. Jorge, F. R. Claudio, C. Sergio, B. Pedro, and H. L. Victor, Mater. Charact., 58, 233 (2007). https://doi.org/10.1016/j.matchar.2006.04.021
  25. K. Lv, J. Yu, L. Cui, S. Chen, and M. Li, J. Alloy. Compd., 509, 4557 (2011). https://doi.org/10.1016/j.jallcom.2011.01.103
  26. S. Wei, B. Peng, L. Chai, Y. Liu, and Z. Li, Trans. Nonferrous Met. Soc. China, 18, 1145 (2008). https://doi.org/10.1016/S1003-6326(08)60196-X
  27. S. Atul, K. Takashi, and T. Akira, Carbon, 38, 1977 (2000). https://doi.org/10.1016/S0008-6223(00)00045-2
  28. A. W. Burton, K. Ong, T. Rea, and I. Y. Chan, Microporous Mesoporous Mat., 117, 75 (2009). https://doi.org/10.1016/j.micromeso.2008.06.010
  29. D. Li, H. Haneda, S. Hishita, N. Ohashi, and N. K. Labhsetwar, J. Fluor. Chem., 126, 69 (2005). https://doi.org/10.1016/j.jfluchem.2004.10.044
  30. J. Wu, G. Xie, J. Lin, Z. Lan, M. Huang, and Y. Huang, J. Power Sources, 195, 6937 (2010). https://doi.org/10.1016/j.jpowsour.2010.04.081
  31. Y. Lee and M. Kang, Mater. Chem. Phys., 122, 284 (2010). https://doi.org/10.1016/j.matchemphys.2010.02.050
  32. L. N. Lewis, J. L. Spivack, S. Gasaway, E. D. Williams, J. Y. Gui, V. Manivannan, and O. P. Siclovan, Sol. Energy Mater. Sol. Cells, 90, 1041 (2006). https://doi.org/10.1016/j.solmat.2005.05.019
  33. J. Krulger, R. Plass, M. Graltzel, P. J. Cameron, and L. M. Peter, J. Phys. Chem. B, 107, 7536 (2003). https://doi.org/10.1021/jp0348777
  34. L. M. Peter and K. G. U. Wijayantha, Electrochim. Acta, 45, 4543 (2000). https://doi.org/10.1016/S0013-4686(00)00605-8
  35. S. M. Waita, B. O. Aduda, J. M. Mwabora, C. G. Granqvist, S. E. Lindquist, G. A. Niklasson, A. Hagfeldt, and G. Boschloo, J. Electroanal. Chem., 605, 151 (2007). https://doi.org/10.1016/j.jelechem.2007.04.001
  36. W. Guo, L. Wu, Z. Chen, T. Ma, G. Boschloo, and A. Hagfeldt, J. Photochem. Photobiol. A-Chem., 219, 180 (2011). https://doi.org/10.1016/j.jphotochem.2011.01.004
  37. L. Lu, R. Li, K. Fan, and T. Peng, Sol. Energy, 84, 844 (2010). https://doi.org/10.1016/j.solener.2010.02.010
  38. L. Dupuy, S. Haller, J. Rousset, F. Donsanti, J. F. Guillemoles, D. Lincot, and F. Decker, Electrochem. Commun., 12, 697 (2010). https://doi.org/10.1016/j.elecom.2010.03.009