초임계 유체의 미생물 불활성화 특성 및 기작

Antimicrobial Activity and Mechanism of Supercritical Fluids

  • 문성민 (서울대학교 화학생물공학부) ;
  • 김정찬 (서울대학교 화학생물공학부) ;
  • 이윤우 (서울대학교 화학생물공학부) ;
  • 윤제용 (서울대학교 화학생물공학부)
  • Mun, Sungmin (World Class University (WCU) Program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering, Seoul National University) ;
  • Kim, Jungchan (World Class University (WCU) Program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering, Seoul National University) ;
  • Lee, Youn-Woo (World Class University (WCU) Program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering, Seoul National University) ;
  • Yoon, Jeyong (World Class University (WCU) Program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering, Seoul National University)
  • 투고 : 2011.06.21
  • 심사 : 2011.08.22
  • 발행 : 2011.10.10

초록

안전하고 미생물 불활성화 능력이 높은 초임계 유체(이산화탄소 및 일산화이질소)는 최근 식품 및 의료 분야 등에서 비가열 살균기술로 응용 가능성이 높아 관심이 증대되고 있다. 하지만 초임계 유체를 이용한 많은 응용 연구에도 불구하고 초임계 유체 살균기술의 살균 성능 및 기작에 대한 이해 부족으로 아직 널리 활용되고 있지 못하다. 따라서 본 글에서는 기존 연구를 중심으로 초임계 유체 특성, 미생물 불활성화 특성과 기작, 주요 영향 인자, 응용 분야 등에 대해서 정리 및 검토하여 초임계 유체 살균기술의 연구 및 상용화에 도움이 되고자 한다.

키워드

supercritical fluid;non-thermal sterilization;antimicrobial activity;antimicrobial mechanism

과제정보

연구 과제 주관 기관 : 한국과학재단

참고문헌

  1. L. Garcia-Gonzalez, A. H. Geeraerd, S. Spilimbergo, K. Elst, L. V. Ginneken, J. Debevere, F. Van Impe, and F. Devlieghere, Int. J. Food Microbiol., 117, 1 (2007). https://doi.org/10.1016/j.ijfoodmicro.2007.02.018
  2. J. Zhang, T. Davis, M. A. Matthews, M. J. Drews, M. LaBerge, and Y. H. An, J. Supercrit. Fluids, 38, 354 (2006). https://doi.org/10.1016/j.supflu.2005.05.005
  3. D. J. Dempsey and R. R. Thirucote, J. Biomater. Appl., 3, 454 (1989).
  4. V. Premnath, W. H. Harris, M. Jasty, and E. W. Merrill, Biomaterials, 17, 1741 (1996). https://doi.org/10.1016/0142-9612(95)00349-5
  5. A. K. Dillow, F. Dehghani, J. S. Hrkach, N. R. Foster, and R. Langer, Proc. Natl. Acad. Scoi., 96, 10344 (1999). https://doi.org/10.1073/pnas.96.18.10344
  6. P. A. Clapp and M. J. Davies, Free Radic. Res., 21, 147 (1994). https://doi.org/10.3109/10715769409056566
  7. F. Devlieghere, L. Vermeiren, and J. Debevere, Int. Dairy J., 14, 273 (2004). https://doi.org/10.1016/j.idairyj.2003.07.002
  8. V. K. Juneja and D. W. Thayer, Irradiation and other physically based control strategies for foodborne pathogens, ed. C. L. Wilson and S. Droby, 171, CRC Press, Boca Raton (2000).
  9. S. Hong, W. Park, and Y. Pyun, Int. J. Food Sci. Technol., 34, 125 (1999). https://doi.org/10.1046/j.1365-2621.1999.00241.x
  10. S. Spilimbergo, N. Elvassore, and A. Bertucco, J. Supercrit. Fluids, 22, 55 (2002). https://doi.org/10.1016/S0896-8446(01)00106-1
  11. F. P. Lucien and N. R. Foster, Phase behavior and solubility, ed. P. G. Jessop, W. Leitner, 37, Wiley-VCH, Weinheim (1999).
  12. G. Gunes, L. K. Blum, and J. H. Hotchkiss, J. Sci. Food Agric., 85, 2362 (2005). https://doi.org/10.1002/jsfa.2260
  13. S. Spilimbergo, D. Mantoan, and A. Dalser, J Supercrit. Fluids, 40, 485 (2007). https://doi.org/10.1016/j.supflu.2006.07.013
  14. F. Gasperi, E. Aprea, F. Biasioli, S. Carlin, I. Endrizzi, G. Pirretti, and S. Spilimbergo, Food Chem., 115, 129 (2009). https://doi.org/10.1016/j.foodchem.2008.11.078
  15. S. Mun, J. S. Hahn, Y. W. Lee, and J. Yoon, J. Int. Food Microbiol., 144, 372 (2011). https://doi.org/10.1016/j.ijfoodmicro.2010.10.022
  16. J. Mchardy and S. P. Sawan, Supercritical fluid cleaning: Fundamentals, Technology and Applications, 5, Noyes publications, New Jersey (1998).
  17. N. M. Dixon and D. B. Kell, J. Appl. Bacteriol., 67, 109 (1989). https://doi.org/10.1111/j.1365-2672.1989.tb03387.x
  18. D. Fraser, Nature, 167, 33 (1951).
  19. M. Kamihira, M. Taniguchi, and T. Kobayashi, Agric. Biol. Chem., 51, 407 (1987). https://doi.org/10.1271/bbb1961.51.407
  20. B. Meyssami, M. O. Balaban, and A. A. Teixeira, Biotechnol. Prog., 8, 149 (1992). https://doi.org/10.1021/bp00014a009
  21. P. Ballestra, A. A. Dasilva, and J. L. Cuq, J. Food Sci., 61, 829 (1996). https://doi.org/10.1111/j.1365-2621.1996.tb12212.x
  22. O. Erkmen, Int. J. Food Microbiol., 65, 131 (2001). https://doi.org/10.1016/S0168-1605(00)00499-2
  23. H. Lin, N. J. Cao, and L. Chen, J. Food Sci., 59, 657 (1994). https://doi.org/10.1111/j.1365-2621.1994.tb05587.x
  24. S. R. Kim, M. S. Rhee, B. C. Kim, H. Lee, and K. H. Kim, J. Microbiol. Meth., 70, 132 (2007). https://doi.org/10.1016/j.mimet.2007.04.003
  25. S. Hong and Y. R. Pyun, J. Food Sci., 64, 728 (1999). https://doi.org/10.1111/j.1365-2621.1999.tb15120.x
  26. H. Lin, Z. Yang, and L. Chen, Chem. Eng. J., 52, B29 (1993). https://doi.org/10.1016/0300-9467(93)80047-R
  27. J. Fages and A. Marty, Biomaterials, 15, 650 (1994). https://doi.org/10.1016/0142-9612(94)90162-7
  28. T. P. Castor and A. D. Lander, Viral inactivation method, WO Patent 93/17724 (1993).
  29. F. Dehghani, N. Annabi, M. Titus, P. Valtchev, and A. Tumilar, Biotechnol. Bioeng., 102, 569 (2009). https://doi.org/10.1002/bit.22059
  30. H. Lin, Z. Yang, and L. Chen, Biotechnol. Prog., 8, 458 (1992). https://doi.org/10.1021/bp00017a013
  31. J. Zhang, S. Burrows, C. Gleason, M. A. Matthews, M. J. Drews, M. LaBerge, and Y. H. H. An, J. Microbiol. Meth., 66, 479 (2006). https://doi.org/10.1016/j.mimet.2006.01.012
  32. A. White, D. Burns, and T. W. Christensen, J. Biotechnol., 123, 504 (2006). https://doi.org/10.1016/j.jbiotec.2005.12.033
  33. S. Spilimbergo and A. Bertucco, Biotechnol. Bioeng., 84, 627 (2003). https://doi.org/10.1002/bit.10783
  34. M. Shimoda, J. Cocunubo-Castellanos, H. Kago, M. Miyake, and Y. Osajima, J. Appl. Microbiol., 91, 306 (2001). https://doi.org/10.1046/j.1365-2672.2001.01386.x
  35. B. G. Werner and J. H. Hotchkiss, J. Dairy Sci., 89, 872 (2006). https://doi.org/10.3168/jds.S0022-0302(06)72151-8
  36. M. Shimoda, Y. Yamamoto, J. Cocunubo-Castellanos, T. Kawano, H. Ishikawa, and Y. Osajima, J. Food Sci., 63, 709 (1998).
  37. H. Ishikawa, M. Shimoda, H. Shiratsuchi, and Y. Osahima, Biosci. Biotech. Biochem., 59, 1949 (1995). https://doi.org/10.1271/bbb.59.1949
  38. A. Enomoto, K. Nakamura, K. Nagai, T. Hashimoto, and M. Hakoda, Biosci. Biotech. Biochem., 61, 1133 (1997). https://doi.org/10.1271/bbb.61.1133
  39. L. Udea and H. Kamaya, Anesth. Anoalg., 63, 929 (1984).
  40. J. C. Gorga, J. H. Hazzard, and W. W. Caughey, Arch. Biochem. Biophys., 240, 734 (1985). https://doi.org/10.1016/0003-9861(85)90082-7
  41. J. H. Hazzard, J. C. Gorga, and W. S. Caughey, Arch. Biochem. Biophys., 240, 747 (1985). https://doi.org/10.1016/0003-9861(85)90083-9
  42. T. Arao, Y. Hara, Y. Suzuki, and K. Tamura, Biosci. Biotech. Bioch., 69, 1365 (2005). https://doi.org/10.1271/bbb.69.1365
  43. J. Fages, B. Poirier, Y. Barbier, P. Frayssinet, M. Joffret, W. Majewski, G. Bonel, and D. Larzul, ASAIO J., 44, 289 (1998). https://doi.org/10.1097/00002480-199807000-00010
  44. C. Cinquemani, C. Boyle, E. Bach, and E. Schollmeyer, J. Supercrit. Fluids, 42, 392 (2007). https://doi.org/10.1016/j.supflu.2006.11.001
  45. S. Mun, J. Jeong, J. Kim, Y. Lee, and J. Yoon, Biofouling, 25, 473 (2009). https://doi.org/10.1080/08927010902874876
  46. R. L. David, Handbook of chemical and physic, 84, 6-201, CRC Press (2003).