Antimicrobial Activity and Mechanism of Supercritical Fluids

초임계 유체의 미생물 불활성화 특성 및 기작

  • Mun, Sungmin (World Class University (WCU) Program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering, Seoul National University) ;
  • Kim, Jungchan (World Class University (WCU) Program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering, Seoul National University) ;
  • Lee, Youn-Woo (World Class University (WCU) Program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering, Seoul National University) ;
  • Yoon, Jeyong (World Class University (WCU) Program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering, Seoul National University)
  • 문성민 (서울대학교 화학생물공학부) ;
  • 김정찬 (서울대학교 화학생물공학부) ;
  • 이윤우 (서울대학교 화학생물공학부) ;
  • 윤제용 (서울대학교 화학생물공학부)
  • Received : 2011.06.21
  • Accepted : 2011.08.22
  • Published : 2011.10.10

Abstract

Recently, there is growing interests in the application of supercritical fluids for food and medical fields since supercritical fluids ($CO_2$ and $N_2O$) have known to be safe and effective as a non-thermal sterilization technique. Although supercritical fluids have been investigated for various kinds of products, they have not yet been used in common currency due to their lack of knowledge related to the antimicrobial activity or detailed mechanisms. In this review paper, we summarized the characteristics, antimicrobial activity and mechanisms, important factors, and applicability of supercritical fluids to help the investigation and commercialization of supercritical fluids sterilization technique.

Keywords

supercritical fluid;non-thermal sterilization;antimicrobial activity;antimicrobial mechanism

Acknowledgement

Supported by : 한국과학재단

References

  1. L. Garcia-Gonzalez, A. H. Geeraerd, S. Spilimbergo, K. Elst, L. V. Ginneken, J. Debevere, F. Van Impe, and F. Devlieghere, Int. J. Food Microbiol., 117, 1 (2007). https://doi.org/10.1016/j.ijfoodmicro.2007.02.018
  2. J. Zhang, T. Davis, M. A. Matthews, M. J. Drews, M. LaBerge, and Y. H. An, J. Supercrit. Fluids, 38, 354 (2006). https://doi.org/10.1016/j.supflu.2005.05.005
  3. D. J. Dempsey and R. R. Thirucote, J. Biomater. Appl., 3, 454 (1989).
  4. V. Premnath, W. H. Harris, M. Jasty, and E. W. Merrill, Biomaterials, 17, 1741 (1996). https://doi.org/10.1016/0142-9612(95)00349-5
  5. A. K. Dillow, F. Dehghani, J. S. Hrkach, N. R. Foster, and R. Langer, Proc. Natl. Acad. Scoi., 96, 10344 (1999). https://doi.org/10.1073/pnas.96.18.10344
  6. P. A. Clapp and M. J. Davies, Free Radic. Res., 21, 147 (1994). https://doi.org/10.3109/10715769409056566
  7. F. Devlieghere, L. Vermeiren, and J. Debevere, Int. Dairy J., 14, 273 (2004). https://doi.org/10.1016/j.idairyj.2003.07.002
  8. V. K. Juneja and D. W. Thayer, Irradiation and other physically based control strategies for foodborne pathogens, ed. C. L. Wilson and S. Droby, 171, CRC Press, Boca Raton (2000).
  9. S. Hong, W. Park, and Y. Pyun, Int. J. Food Sci. Technol., 34, 125 (1999). https://doi.org/10.1046/j.1365-2621.1999.00241.x
  10. S. Spilimbergo, N. Elvassore, and A. Bertucco, J. Supercrit. Fluids, 22, 55 (2002). https://doi.org/10.1016/S0896-8446(01)00106-1
  11. F. P. Lucien and N. R. Foster, Phase behavior and solubility, ed. P. G. Jessop, W. Leitner, 37, Wiley-VCH, Weinheim (1999).
  12. G. Gunes, L. K. Blum, and J. H. Hotchkiss, J. Sci. Food Agric., 85, 2362 (2005). https://doi.org/10.1002/jsfa.2260
  13. S. Spilimbergo, D. Mantoan, and A. Dalser, J Supercrit. Fluids, 40, 485 (2007). https://doi.org/10.1016/j.supflu.2006.07.013
  14. F. Gasperi, E. Aprea, F. Biasioli, S. Carlin, I. Endrizzi, G. Pirretti, and S. Spilimbergo, Food Chem., 115, 129 (2009). https://doi.org/10.1016/j.foodchem.2008.11.078
  15. S. Mun, J. S. Hahn, Y. W. Lee, and J. Yoon, J. Int. Food Microbiol., 144, 372 (2011). https://doi.org/10.1016/j.ijfoodmicro.2010.10.022
  16. J. Mchardy and S. P. Sawan, Supercritical fluid cleaning: Fundamentals, Technology and Applications, 5, Noyes publications, New Jersey (1998).
  17. N. M. Dixon and D. B. Kell, J. Appl. Bacteriol., 67, 109 (1989). https://doi.org/10.1111/j.1365-2672.1989.tb03387.x
  18. D. Fraser, Nature, 167, 33 (1951).
  19. M. Kamihira, M. Taniguchi, and T. Kobayashi, Agric. Biol. Chem., 51, 407 (1987). https://doi.org/10.1271/bbb1961.51.407
  20. B. Meyssami, M. O. Balaban, and A. A. Teixeira, Biotechnol. Prog., 8, 149 (1992). https://doi.org/10.1021/bp00014a009
  21. P. Ballestra, A. A. Dasilva, and J. L. Cuq, J. Food Sci., 61, 829 (1996). https://doi.org/10.1111/j.1365-2621.1996.tb12212.x
  22. O. Erkmen, Int. J. Food Microbiol., 65, 131 (2001). https://doi.org/10.1016/S0168-1605(00)00499-2
  23. H. Lin, N. J. Cao, and L. Chen, J. Food Sci., 59, 657 (1994). https://doi.org/10.1111/j.1365-2621.1994.tb05587.x
  24. S. R. Kim, M. S. Rhee, B. C. Kim, H. Lee, and K. H. Kim, J. Microbiol. Meth., 70, 132 (2007). https://doi.org/10.1016/j.mimet.2007.04.003
  25. S. Hong and Y. R. Pyun, J. Food Sci., 64, 728 (1999). https://doi.org/10.1111/j.1365-2621.1999.tb15120.x
  26. H. Lin, Z. Yang, and L. Chen, Chem. Eng. J., 52, B29 (1993). https://doi.org/10.1016/0300-9467(93)80047-R
  27. J. Fages and A. Marty, Biomaterials, 15, 650 (1994). https://doi.org/10.1016/0142-9612(94)90162-7
  28. T. P. Castor and A. D. Lander, Viral inactivation method, WO Patent 93/17724 (1993).
  29. F. Dehghani, N. Annabi, M. Titus, P. Valtchev, and A. Tumilar, Biotechnol. Bioeng., 102, 569 (2009). https://doi.org/10.1002/bit.22059
  30. H. Lin, Z. Yang, and L. Chen, Biotechnol. Prog., 8, 458 (1992). https://doi.org/10.1021/bp00017a013
  31. J. Zhang, S. Burrows, C. Gleason, M. A. Matthews, M. J. Drews, M. LaBerge, and Y. H. H. An, J. Microbiol. Meth., 66, 479 (2006). https://doi.org/10.1016/j.mimet.2006.01.012
  32. A. White, D. Burns, and T. W. Christensen, J. Biotechnol., 123, 504 (2006). https://doi.org/10.1016/j.jbiotec.2005.12.033
  33. S. Spilimbergo and A. Bertucco, Biotechnol. Bioeng., 84, 627 (2003). https://doi.org/10.1002/bit.10783
  34. M. Shimoda, J. Cocunubo-Castellanos, H. Kago, M. Miyake, and Y. Osajima, J. Appl. Microbiol., 91, 306 (2001). https://doi.org/10.1046/j.1365-2672.2001.01386.x
  35. B. G. Werner and J. H. Hotchkiss, J. Dairy Sci., 89, 872 (2006). https://doi.org/10.3168/jds.S0022-0302(06)72151-8
  36. M. Shimoda, Y. Yamamoto, J. Cocunubo-Castellanos, T. Kawano, H. Ishikawa, and Y. Osajima, J. Food Sci., 63, 709 (1998).
  37. H. Ishikawa, M. Shimoda, H. Shiratsuchi, and Y. Osahima, Biosci. Biotech. Biochem., 59, 1949 (1995). https://doi.org/10.1271/bbb.59.1949
  38. A. Enomoto, K. Nakamura, K. Nagai, T. Hashimoto, and M. Hakoda, Biosci. Biotech. Biochem., 61, 1133 (1997). https://doi.org/10.1271/bbb.61.1133
  39. L. Udea and H. Kamaya, Anesth. Anoalg., 63, 929 (1984).
  40. J. C. Gorga, J. H. Hazzard, and W. W. Caughey, Arch. Biochem. Biophys., 240, 734 (1985). https://doi.org/10.1016/0003-9861(85)90082-7
  41. J. H. Hazzard, J. C. Gorga, and W. S. Caughey, Arch. Biochem. Biophys., 240, 747 (1985). https://doi.org/10.1016/0003-9861(85)90083-9
  42. T. Arao, Y. Hara, Y. Suzuki, and K. Tamura, Biosci. Biotech. Bioch., 69, 1365 (2005). https://doi.org/10.1271/bbb.69.1365
  43. J. Fages, B. Poirier, Y. Barbier, P. Frayssinet, M. Joffret, W. Majewski, G. Bonel, and D. Larzul, ASAIO J., 44, 289 (1998). https://doi.org/10.1097/00002480-199807000-00010
  44. C. Cinquemani, C. Boyle, E. Bach, and E. Schollmeyer, J. Supercrit. Fluids, 42, 392 (2007). https://doi.org/10.1016/j.supflu.2006.11.001
  45. S. Mun, J. Jeong, J. Kim, Y. Lee, and J. Yoon, Biofouling, 25, 473 (2009). https://doi.org/10.1080/08927010902874876
  46. R. L. David, Handbook of chemical and physic, 84, 6-201, CRC Press (2003).